getMGM.output: Extract Point Estimates And Standard Errors of Multivariate...

View source: R/MGM.output_helper.R

getMGM.outputR Documentation

Extract Point Estimates And Standard Errors of Multivariate Latent Growth Curve Models Or Multivariate Latent Change Score Models

Description

This function computes and returns a data frame containing point estimates and standard errors for the parameters of a multivariate latent growth curve model or a multivariate latent change score model.

Usage

getMGM.output(model, y_var, records, curveFun, y_model, names)

Arguments

model

An object representing a fitted multivariate latent growth curve model or latent change score model.

y_var

A vector of strings, with each element representing the prefix for column names corresponding to a particular outcome variable at each study wave. It takes the value passed from getMGM().

records

A list of numeric vectors, with each vector specifying the indices of the observed study waves for the corresponding outcome variable. It takes the value passed from getMGM().

curveFun

A string specifying the functional form of the growth curve. Supported options for y_model = "LGCM" include: "linear" (or "LIN"), "quadratic" (or "QUAD"), "negative exponential" (or "EXP"), "Jenss-Bayley" (or "JB"), and "bilinear spline" (or "BLS"). Supported options for y_model = "LCSM" include: "quadratic" (or "QUAD"), "negative exponential" (or "EXP"), "Jenss-Bayley" (or "JB"), and "nonparametric" (or "NonP"). It takes the value passed from getMGM().

y_model

A string specifying how to fit the longitudinal outcome. Supported values are "LGCM" and "LCSM". It takes the value passed from getMGM().

names

A character vector specifying parameter names. It takes the value passed from getMGM().

Value

A data frame containing the point estimates and standard errors for parameters of a multivariate latent growth curve model or a multivariate latent change score model.


nlpsem documentation built on Sept. 13, 2023, 1:06 a.m.