View source: R/getLatentKappa.R
getLatentKappa | R Documentation |
This function calculates the latent kappa, a measure of agreement between two sets of latent categorical labels. It also computes the confidence interval and provides a qualitative interpretation of the agreement level.
getLatentKappa(label1, label2, conf.level = 0.95)
label1 |
A factor vector representing the first set of latent categorical labels. |
label2 |
A factor vector representing the second set of latent categorical labels. |
conf.level |
A numeric value representing the confidence level for the confidence interval of the kappa statistic.
The default value is |
An object of class KappaOutput
with the following slots:
kappa_value
: A string representing the kappa statistic along with its confidence interval.
judgment
: A string describing the level of agreement, such as "Perfect Agreement", "Slight Agreement", etc.
The content of these slots can be printed using the printTable()
method for S4 objects.
Dumenci, L. (2011). The Psychometric Latent Agreement Model (PLAM) for Discrete Latent Variables Measured by Multiple Items. Organizational Research Methods, 14(1), 91-115. SAGE Publications. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1177/1094428110374649")}
Landis, J., & Koch, G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159-174. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.2307/2529310")}
Agresti, A. (2012). Models for Matched Pairs. In Categorical Data Analysis (pp. 413-454). Wiley.
mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE)
data("RMS_dat")
RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the starting point of the study
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- RMS_dat0$T1 - baseT
RMS_dat0$T2 <- RMS_dat0$T2 - baseT
RMS_dat0$T3 <- RMS_dat0$T3 - baseT
RMS_dat0$T4 <- RMS_dat0$T4 - baseT
RMS_dat0$T5 <- RMS_dat0$T5 - baseT
RMS_dat0$T6 <- RMS_dat0$T6 - baseT
RMS_dat0$T7 <- RMS_dat0$T7 - baseT
RMS_dat0$T8 <- RMS_dat0$T8 - baseT
RMS_dat0$T9 <- RMS_dat0$T9 - baseT
RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning)
RMS_dat0$ex2 <- scale(RMS_dat0$Attention_focus)
RMS_dat0$gx1 <- scale(RMS_dat0$INCOME)
RMS_dat0$gx2 <- scale(RMS_dat0$EDU)
## Fit a growth mixture model with no TICs
set.seed(20191029)
MIX_BLS_LGCM_r <- getMIX(
dat = RMS_dat0, prop_starts = c(0.33, 0.34, 0.33), sub_Model = "LGCM",
cluster_TIC = NULL, y_var = "M", t_var = "T", records = 1:9,
curveFun = "BLS", intrinsic = FALSE, res_scale = list(0.3, 0.3, 0.3),
growth_TIC = NULL, tries = 10
)
## Membership of each individual from growth mixture model with no TICs
label1 <- getPosterior(
model = MIX_BLS_LGCM_r@mxOutput, nClass = 3, label = FALSE, cluster_TIC = NULL
)
set.seed(20191029)
## Fit a growth mixture model with growth TICs and cluster TICs
MIX_BLS_LGCM.TIC_r <- getMIX(
dat = RMS_dat0, prop_starts = c(0.33, 0.34, 0.33), sub_Model = "LGCM",
cluster_TIC = c("gx1", "gx2"), y_var = "M", t_var = "T", records = 1:9,
curveFun = "BLS", intrinsic = FALSE, res_scale = list(0.3, 0.3, 0.3),
growth_TIC = c("ex1", "ex2"), tries = 10
)
## Membership of each individual from growth mixture model with growth TICs and cluster TICs
label2 <- getPosterior(
model = MIX_BLS_LGCM.TIC_r@mxOutput, nClass = 3, label = FALSE,
cluster_TIC = c("gx1", "gx2")
)
## Calcualte the agreement between two sets of membership labels
getLatentKappa(label1 = label1@membership, label2 = label2@membership)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.