Nothing
## Testing predict_gam
require(nlraa)
library(mgcv)
require(minpack.lm)
require(ggplot2)
if(Sys.info()[["user"]] == "fernandomiguez"){
data("maizeleafext")
ggplot(data = maizeleafext, aes(x = temp, y = rate)) +
geom_point()
fmg <- gam(rate ~ temp + s(temp, k = 9), data = maizeleafext)
fmb <- nlsLM(rate ~ SSbeta5(temp, mu, tb, a, tc, b), data = maizeleafext)
##fmr <- nlsLM(rate ~ SSratio(temp, a, b, c, d), data = maizeleafext)
IC_tab(fmg, fmb)
fmgp <- predict_gam(fmg, interval = "conf")
fmbp <- predict2_nls(fmb, interval = "conf")
maizeleafextAG <- cbind(maizeleafext, fmgp)
maizeleafextAB <- cbind(maizeleafext, fmbp)
ggplot() +
geom_point(data = maizeleafextAG, aes(x = temp, y = rate)) +
geom_line(data = maizeleafextAG, aes(x = temp, y = Estimate, color = "GAM"), color = "red") +
geom_line(data = maizeleafextAB, aes(x = temp, y = Estimate, color = "Beta5"), color = "blue") +
geom_ribbon(data = maizeleafextAG,
aes(x = temp, ymin = Q2.5, ymax = Q97.5), fill = "red", alpha = 0.3) +
geom_ribbon(data = maizeleafextAB,
aes(x = temp, ymin = Q2.5, ymax = Q97.5), fill = "blue", alpha = 0.3)
data(swpg)
ggplot(data = swpg, aes(x = ftsw, y = lfgr)) +
geom_point()
fsw.G <- gam(lfgr ~ ftsw + s(ftsw), data = swpg)
fsw.LP <- nls(lfgr ~ SSlinp(ftsw, a, b, xs), data = swpg)
fsw.A <- nls(lfgr ~ SSasymp(ftsw, Asym, R0, lrc), data = swpg)
fsw.C <- lm(lfgr ~ poly(ftsw, 3), data = swpg)
IC_tab(fsw.G, fsw.LP, fsw.A, fsw.C, criteria = "BIC")
prd <- predict_nls(fsw.G, fsw.LP, fsw.A, fsw.C, criteria = "BIC", interval = "conf")
swpgA <- cbind(swpg, prd)
ggplot(data = swpgA, aes(x = ftsw, y = lfgr)) +
geom_point() +
geom_line(aes(y = fitted(fsw.G), color = "GAM")) +
geom_line(aes(y = fitted(fsw.LP), color = "LP")) +
geom_line(aes(y = fitted(fsw.A), color = "A")) +
geom_line(aes(y = fitted(fsw.C), color = "C")) +
geom_line(aes(y = Estimate, color = "Avg. model"), size = 1.2) +
geom_ribbon(aes(ymin = Q2.5, ymax = Q97.5), fill = "purple", alpha = 0.3)
data(sm)
fsm.G <- gam(Yield ~ DOY*Crop*Input + s(DOY), data = sm)
fsm.Gp <- predict_gam(fsm.G, interval = "conf")
smAG <- cbind(sm, fsm.Gp)
ggplot(data = smAG, aes(x = DOY, y = Yield, color = Crop)) +
facet_wrap(~Input) +
geom_point() +
geom_line(aes(y = Estimate)) +
geom_ribbon(aes(ymin = Q2.5, ymax = Q97.5, fill = Crop, color = NULL), alpha = 0.3)
## Comparing predict_gam with predict2_gam
data(barley)
fm.G <- gam(yield ~ s(NF, k = 6), data = barley)
brly.prd1 <- predict_gam(fm.G, interval = "conf")
brly.prd2 <- predict2_gam(fm.G, interval = "conf")
cmp.gam <- data.frame(method = rep(c("GAM", "MC"), each = nrow(barley)),
rbind(barley, barley),
rbind(brly.prd1, brly.prd2))
ggplot(data = cmp.gam, aes(x = NF, y = yield)) +
geom_point() +
facet_wrap(~ method) +
geom_line(aes(y = Estimate)) +
geom_ribbon(aes(ymin = Q2.5, ymax = Q97.5), color = "purple", alpha = 0.3) +
ggtitle("95% confidence bands")
brly.prd1 <- predict_gam(fm.G, interval = "pred")
brly.prd2 <- predict2_gam(fm.G, interval = "pred")
cmp2.gam <- data.frame(method = rep(c("GAM", "MC"), each = nrow(barley)),
rbind(barley, barley),
rbind(brly.prd1, brly.prd2))
ggplot(data = cmp2.gam, aes(x = NF, y = yield)) +
geom_point() +
facet_wrap(~ method) +
geom_line(aes(y = Estimate)) +
geom_ribbon(aes(ymin = Q2.5, ymax = Q97.5), color = "purple", alpha = 0.3) +
ggtitle("95% predicition bands")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.