model2rjfun | R Documentation |
These functions create functions to evaluate residuals or sums of squares at particular parameter locations.
model2rjfun(modelformula, pvec, data = NULL, jacobian = TRUE, testresult = TRUE, ...)
SSmod2rjfun(modelformula, pvec, data = NULL, jacobian = TRUE, testresult = TRUE, ...)
model2ssgrfun(modelformula, pvec, data = NULL, gradient = TRUE,
testresult = TRUE, ...)
modelexpr(fun)
modelformula |
A formula describing a nonlinear regression model. |
pvec |
A vector of parameters. |
data |
A dataframe, list or environment holding data used in the calculation. |
jacobian |
Whether to compute the Jacobian matrix. |
testresult |
Whether to test the function by evaluating it at |
gradient |
Whether to compute the gradient vector. |
fun |
A function produced by one of |
... |
Dot arguments, that is, arguments that may be supplied by |
If pvec
does not have names, the parameters will have names
generated in the form ‘p_<n>’, e.g. p_1, p_2
. Names that appear in
pvec
will be taken to be parameters of the model.
The data
argument may be a dataframe, list or environment, or NULL
.
If it is not an environment, one will be constructed using the components
of data
with parent environment set to be
the environment of modelformula
.
SSmod2rjfun
returns a function with header function(prm)
, which
evaluates the residuals (and if jacobian
is TRUE
the
Jacobian matrix) of the selfStart model (the rhs is used) at prm
.
The residuals are defined to be the right hand side of modelformula
minus the left hand side. Note that the selfStart model used in the model
formula must be available (i.e., loaded). If this function is called from
nlxb()
then the control
element japprox
must be
set to value SSJac
.
model2rjfun
returns a function with header function(prm)
, which
evaluates the residuals (and if jacobian
is TRUE
the
Jacobian matrix) of the model at prm
. The residuals are defined to be
the right hand side of modelformula
minus the left hand side.
model2ssgrfun
returns a function with header function(prm)
, which
evaluates the sum of squared residuals (and if gradient
is TRUE
the
gradient vector) of the model at prm
.
modelexpr
returns the expression used to calculate the vector of
residuals (and possibly the Jacobian) used in the previous functions.
John Nash and Duncan Murdoch
nls
# We do not appear to have an example for modelexpr. See nlsr-devdoc.Rmd for one.
y <- c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443, 38.558,
50.156, 62.948, 75.995, 91.972)
tt <- seq_along(y) # for testing
mydata <- data.frame(y = y, tt = tt)
f <- y ~ b1/(1 + b2 * exp(-1 * b3 * tt))
p <- c(b1 = 1, b2 = 1, b3 = 1)
rjfn <- model2rjfun(f, p, data = mydata)
rjfn(p)
rjfnnoj <- model2rjfun(f, p, data = mydata, jacobian=FALSE)
rjfnnoj(p)
myexp <- modelexpr(rjfn)
cat("myexp:"); print(myexp)
ssgrfn <- model2ssgrfun(f, p, data = mydata)
ssgrfn(p)
ssgrfnnoj <- model2ssgrfun(f, p, data = mydata, gradient=FALSE)
ssgrfnnoj(p)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.