NTF | R Documentation |
The input data is assumed to be non-negative tensor. NTF decompose the tensor to the diagonal core tensor (S) and low-dimensional factor matices (A).
NTF(X, M=NULL, pseudocount=.Machine$double.eps, initA=NULL,
fixA=FALSE, L1_A=1e-10, L2_A=1e-10, rank = 3,
algorithm = c("Frobenius", "KL", "IS", "Pearson", "Hellinger", "Neyman",
"HALS", "Alpha-HALS", "Beta-HALS", "Alpha", "Beta"),
init = c("NMF", "ABS-SVD", "ALS", "Random"), Alpha = 1,
Beta = 2, thr = 1e-10, num.iter = 100, viz = FALSE,
figdir = NULL, verbose = FALSE)
X |
K-order input tensor which has I_1, I_2, ..., and I_K dimensions. |
M |
K-order mask tensor which has I_1, I_2, ..., and I_K dimensions. If the mask tensor has missing values, specify the element as 0 (otherwise 1). |
pseudocount |
The pseudo count to avoid zero division, when the element is zero (Default: Machine Epsilon). |
initA |
A list containing the initial values of K factor matrices (A_k, <Ik*Jk>, k=1..K, Default: NULL). |
fixA |
Whether the factor matrices Ak are updated in each iteration step (Default: FALSE). |
L1_A |
Paramter for L1 regularitation (Default: 1e-10). This also works as small positive constant to prevent division by zero, so should be set as 0. |
L2_A |
Paramter for L2 regularitation (Default: 1e-10). |
rank |
The number of low-dimension in each mode (Default: 3). |
algorithm |
NTF algorithms. "Frobenius", "KL", "IS", "Pearson", "Hellinger", "Neyman", "HALS", "Alpha-HALS", "Beta-HALS", "Alpha", and "Beta" are available (Default: "Frobenius"). |
init |
The initialization algorithms. "NMF", "ABS-SVD", "ALS", and "Random" are available (Default: "NMF"). |
Alpha |
The parameter of Alpha-divergence. |
Beta |
The parameter of Beta-divergence. |
thr |
When error change rate is lower than thr1, the iteration is terminated (Default: 1E-10). |
num.iter |
The number of interation step (Default: 100). |
viz |
If viz == TRUE, internal reconstructed tensor can be visualized. |
figdir |
the directory for saving the figure, when viz == TRUE (Default: NULL). |
verbose |
If verbose == TRUE, Error change rate is generated in console windos. |
S : K-order tensor object, which is defined as S4 class of rTensor package. A : A list containing K factor matrices. RecError : The reconstruction error between data tensor and reconstructed tensor from S and A. TrainRecError : The reconstruction error calculated by training set (observed values specified by M). TestRecError : The reconstruction error calculated by test set (missing values specified by M). RelChange : The relative change of the error.
Koki Tsuyuzaki
Andrzej CICHOCKI et. al., (2007). Non-negative Tensor Factorization using Alpha and Beta Divergence. IEEE ICASSP 2007
Anh Huy PHAN et. al., (2008). Multi-way Nonnegative Tensor Factorization Using Fast Hierarchical Alternating Least Squares Algorithm (HALS). NOLTA2008
Andrzej CICHOCKI et. al., (2008). Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
plotTensor3D
tensordata <- toyModel(model = "CP")
out <- NTF(tensordata, rank=3, algorithm="Beta-HALS", num.iter=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.