Description Usage Arguments Value Examples
Plot the predictions or results of nonet_ensemble
1 2  | nonet_plot(x, y, dataframe, plot_type = NULL, nonet_size = 20,
  nonet_alpha = 0.3, nonet_bins = 25)
 | 
x | 
 x axis variable name or histogram entity name  | 
y | 
 y axis variable name  | 
dataframe | 
 dataframe which is used for plotting purpose.  | 
plot_type | 
 type of plot, if not provided it takes "NULL"  | 
nonet_size | 
 size of plot need to feed in ggplot  | 
nonet_alpha | 
 value of alpha for ggplot  | 
nonet_bins | 
 number of bins for histogram  | 
plotted for the plot results provided as input.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  | # nonet_plot functionality can be explained via below example
# Setup
library(caret)
library(nonet)
library(ggplot2)
# Load Data
dataframe <- data.frame(banknote_authentication[600:900, ])
dataframe$class <- as.factor(ifelse(dataframe$class >= 1, 'Yes', 'No'))
# Spliting into train and test
index <- createDataPartition(dataframe$class, p=0.75, list=FALSE)
trainSet <- dataframe[ index,]
testSet <- dataframe[-index,]
# Feature selection 
 control <- rfeControl(functions = rfFuncs,
  method = "repeatedcv",
  repeats = 2,
  verbose = FALSE)
outcomeName <- 'class'
predictors <- c("curtosis", "entropy")
# Model Training & predictions
banknote_rf <- train(trainSet[,predictors],trainSet[,outcomeName],method='rf')
predictions_rf_raw <- predict.train(object=banknote_rf,testSet[,predictors],type="raw")
# Results
nonet_eval_rf <- confusionMatrix(predictions_rf_raw,testSet[,outcomeName])
eval_rf_df <- data.frame(nonet_eval_rf$table)
nonet_plot(eval_rf_df$Prediction, eval_rf_df$Reference, eval_rf_df, plot_type = "point")
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.