R/numericalFunctions.R

Defines functions differentiateAxis differentiate trapezoidalRule rungeKutta

# private method
# Runge-Kutta method for solving differential equations. It is used to generate
# both Lorenz and  Rossler systems.
rungeKutta = function(func, initial.condition, time, params) {
  n.samples = length(time)
  h = time[[2]] - time[[1]]
  y = matrix(ncol = length(initial.condition), nrow = n.samples)
  y[1,] = initial.condition
  for (i in 2:n.samples) {
    k1 = h * func(y[i - 1, ], time[[i - 1]], params)
    k2 = h * func(y[i - 1, ] + k1 / 2 , time[[i - 1]] + h / 2, params)
    k3 = h * func(y[i - 1, ] + k2 / 2 , time[[i - 1]] + h / 2, params)
    k4 = h * func(y[i - 1, ] + k3 , time[[i - 1]] + h, params)
    
    y[i, ] = y[i - 1, ] + (k1 + 2 * k2 + 2 * k3 + k4) / 6
  }
  y
}

# private method
# Trapezoidal rule for numerical integration 
trapezoidalRule = function(x, integrand ){
  index = 2:length(x)
  (
    as.double((x[index] - x[index - 1]) %*% 
                (integrand[index] + integrand[index - 1])) / 2
  )
}


# private method implementing (y(x + h) - y(x - h))/2h 
differentiate = function(h, y) {
  len = length(y)
  if (len >= 3) {
    derivative = (y[3:len] - y[1:(len - 2)]) / (2 * h)
  } else{
    # if not possible... use (y(x+h)-y(x))/h
    derivative = diff(y) / (h)
  }
  derivative
}

differentiateAxis = function(x) {
  len = length(x)
  if (len >= 3) {
    # We have used the (y(x + h) - y(x - h)) / 2h  rule
    # Eliminate first and last 
    axis = x[-c(1, len)]
  } else {
    # We have used the (y(x + h) - y(x)) / h rule
    # Eliminate last
    axis = x[-c(len)]
  }
  axis
}

Try the nonlinearTseries package in your browser

Any scripts or data that you put into this service are public.

nonlinearTseries documentation built on Aug. 11, 2018, 1:04 a.m.