Engel95 | R Documentation |
British cross-section data consisting of a random sample taken from the British Family Expenditure Survey for 1995. The households consist of married couples with an employed head-of-household between the ages of 25 and 55 years. There are 1655 household-level observations in total.
data("Engel95")
A data frame with 10 columns, and 1655 rows.
expenditure share on food, of type numeric
expenditure share on catering, of type numeric
expenditure share on alcohol, of type numeric
expenditure share on fuel, of type numeric
expenditure share on motor, of type numeric
expenditure share on fares, of type numeric
expenditure share on leisure, of type numeric
logarithm of total expenditure, of type numeric
logarithm of total earnings, of type numeric
number of children, of type numeric
Richard Blundell and Dennis Kristensen
Blundell, R. and X. Chen and D. Kristensen (2007), “Semi-Nonparametric IV Estimation of Shape-Invariant Engel Curves,” Econometrica, 75, 1613-1669.
Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton University Press.
## Not run:
## Example - compute nonparametric instrumental regression using
## Landweber-Fridman iteration of Fredholm integral equations of the
## first kind.
## We consider an equation with an endogenous regressor (`z') and an
## instrument (`w'). Let y = phi(z) + u where phi(z) is the function of
## interest. Here E(u|z) is not zero hence the conditional mean E(y|z)
## does not coincide with the function of interest, but if there exists
## an instrument w such that E(u|w) = 0, then we can recover the
## function of interest by solving an ill-posed inverse problem.
data(Engel95)
## Sort on logexp (the endogenous regressor) for plotting purposes
Engel95 <- Engel95[order(Engel95$logexp),]
attach(Engel95)
model.iv <- npregiv(y=food,z=logexp,w=logwages,method="Landweber-Fridman")
phihat <- model.iv$phi
## Compute the non-IV regression (i.e. regress y on z)
ghat <- npreg(food~logexp,regtype="ll")
## For the plots, restrict focal attention to the bulk of the data
## (i.e. for the plotting area trim out 1/4 of one percent from each
## tail of y and z)
trim <- 0.0025
plot(logexp,food,
ylab="Food Budget Share",
xlab="log(Total Expenditure)",
xlim=quantile(logexp,c(trim,1-trim)),
ylim=quantile(food,c(trim,1-trim)),
main="Nonparametric Instrumental Kernel Regression",
type="p",
cex=.5,
col="lightgrey")
lines(logexp,phihat,col="blue",lwd=2,lty=2)
lines(logexp,fitted(ghat),col="red",lwd=2,lty=4)
legend(quantile(logexp,trim),quantile(food,1-trim),
c(expression(paste("Nonparametric IV: ",hat(varphi)(logexp))),
"Nonparametric Regression: E(food | logexp)"),
lty=c(2,4),
col=c("blue","red"),
lwd=c(2,2))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.