Nothing
#' Replext Simulation Shiny App with Database Integration
#'
#' This application replicates and extends the simulation results from
#' the paper by Dwivedi et al. (2017), now with added functionality to
#' interact with a PostgreSQL database. The app includes a user interface
#' for selecting simulation parameters and a server logic to process the
#' simulation and handle user interactions, including saving and retrieving
#' data from a database.
#'
#' @details
#' The app's user interface consists of:
#' - A dropdown menu to select a cell block for the simulation, which is
#' populated using the `getCellBlocks` function.
#' - Dynamic UI elements for inputting simulation parameters, generated
#' based on the selected cell block.
#' - Buttons to run the simulation and submit the results to a PostgreSQL database.
#' - A table to display the simulation results and previously saved responses.
#' - A download button to export all responses as a CSV file.
#'
#' The server logic of the app handles:
#' - Rendering the dynamic UI elements for simulation parameters.
#' - Observing the simulation run event and processing the simulation
#' using the `runSimulation` function.
#' - Rendering a table to display the simulation results.
#' - Handling the submission of results and storing them in a PostgreSQL database.
#' - Loading existing responses from the database.
#' - Downloading responses as a CSV file.
#'
#' @param dbname The name of the PostgreSQL database to connect to.
#' @param datatable The name of the table in the database where the simulation results will be stored and retrieved.
#' @param host The host address of the PostgreSQL database.
#' @param port The port number for the PostgreSQL database connection.
#' @param user The username for accessing the PostgreSQL database.
#' @param password The password for the specified user to access the PostgreSQL database.
#'
#' @return A Shiny app object which can be run to start the application.
#'
#' @references
#' Dwivedi AK, Mallawaarachchi I, Alvarado LA. Analysis of small sample size studies
#' using nonparametric bootstrap test with pooled resampling method. Stat Med. 2017
#' Jun 30;36(14):2187-2205. doi: 10.1002/sim.7263. Epub 2017 Mar 9. PMID: 28276584.
#'
#' @examples
#' if (interactive()) {
#' replext_pgsql(
#' dbname = "your_db_name",
#' datatable = "your_data_table",
#' host = "localhost",
#' port = 5432,
#' user = "your_username",
#' password = "your_password"
#' )
#' }
#'
#' @export
replext_pgsql <- function(dbname, datatable, host, port, user, password) {
# Define the UI
ui <- shiny::fluidPage(
shiny::titlePanel("Replext Simulation"),
shiny::sidebarLayout(
shiny::sidebarPanel(
shiny::selectInput("cellBlock", "Select Cell Block:",
choices = getCellBlocks()),
shiny::uiOutput("paramsUI"),
shiny::actionButton("runSim", "Run Simulation"),
mmints::postgresUI("postgres")$submit,
shiny::br(), # Add a line break
shiny::br(), # Add a line break
mmints::postgresUI("postgres")$download,
mmints::citationUI("citations")$button
),
shiny::mainPanel(
# Conditionally display the Simulation Results header and table
shiny::uiOutput("simulation_results_header"),
DT::DTOutput("resultsTable"),
shiny::br(), # Add a line break
shiny::br(), # Add a line break
# Add a header for the responses table
shiny::div(
shiny::h4("All Responses"),
mmints::postgresUI("postgres")$table,
),
shiny::uiOutput("citation_header"),
mmints::citationUI("citations")$output
)
)
)
# Define the server logic
server <- function(input, output, session) {
# Render the UI for parameters based on the selected cell block
output$paramsUI <- shiny::renderUI({
getUIParams(input$cellBlock)
})
# initialize the postgres module
postgres_module <- mmints::postgresServer("postgres",
dbname = dbname,
datatable = datatable,
host = host,
port = port,
user = user,
password = password,
data = NULL)
# Reactive value to store the results
results <- shiny::reactiveVal(data.frame()) #For display
results_exp <- shiny::reactiveVal(data.frame()) #For export
# # Load data from the database on app start
# output$responses <- DT::renderDT({
# loadData()
# }, options = list(pageLength = 5))
# Observe event for the run simulation button
shiny::observeEvent(input$runSim, {
# make sure responses are clear
results(data.frame())
# Call the simulation function with both user-provided and default parameters
simResults <- runSimulation(input)
# Update the results reactive value
results(simResults)
results_exp(appendInputParams(results(), input))
# submit results to database
postgres_module$data_to_submit(results_exp())
})
#Output the results table
output$resultsTable <- DT::renderDT({
results()
}, options = list(pageLength = 5))
# Conditionally display the Simulation Results header
output$simulation_results_header <- shiny::renderUI({
if (nrow(results()) > 0) {
shiny::h4("Simulation Results")
} else {
NULL
}
})
# build citation list
citations <- list(
"Nonparametric Bootstrap Test with Pooled Resampling Method:" = "Dwivedi, A. K., Mallawaarachchi, I., & Alvarado, L. A. (2017). Analysis of small sample size studies using nonparametric bootstrap test with pooled resampling method. Statistics in Medicine, 36(14), 2187-2205. https://doi.org/10.1002/sim.7263",
"Software Implementing Nonparametric Bootstrap Test with Pooled Resampling:" = function() mmints::format_citation(utils::citation("npboottprm"))
)
# create citation for display
mmints::citationServer("citations", citations)
}
# Run the application
shiny::shinyApp(ui = ui, server = server)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.