Description Usage Arguments Details Value Author(s) References Examples
Give an estimation of the abrupt change point in the copula when changes known occurs in the m.c.d.f.
1 | kn(X,b)
|
X |
a (non-empty) numeric matrix of d-dimensional data values, d≥q 2. Each row of the matrix contains one mutlivariate data. |
b |
a single value or a vector of real values on (0,1] indicating the location(s) of the potential break time(s) in marginal cumulative distribution functions. You can specify b=1 (default) for any break time. |
Estimation of the location of the abrupt change point in copula
estimation of the location of the change point in the copula
Rohmer Tom
Tom Rohmer, Some results on change-point detection in cross-sectional dependence of multivariate data with changes in marginal distributions, Statistics & Probability Letters, Volume 119, December 2016, Pages 45-54, ISSN 0167-7152
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | #Example 1: Abrupt change in the m.c.d.f at time (known) m=50
# and in the copula at time k=50 (to be estimated)
n=100
m=50
mean1 = rep(0,2)
mean2 = rep(4,2)
sigma1 = matrix(c(1,0.2,0.2,1),2,2)
sigma2 = matrix(c(1,0.6,0.6,1),2,2)
X=matrix(rep(0,n*2),n,2)
for(j in 1:m) X[j,]=t(chol(sigma1))%*%rnorm(2) + mean1
for(j in (m+1):n) X[j,]=t(chol(sigma2))%*%rnorm(2) + mean2
kn(X,b=0.5)
#Example 2: Abrupt changes in the m.c.d.f at times (known) m=100 and 150
# and in the copula at time k=50 (to be estimated)
n=200
m1 = 100
m2 = 150
k = 50
sigma1 = matrix(c(1,0.2,0.2,1),2,2)
sigma2 = matrix(c(1,0.6,0.6,1),2,2)
mean1 = rep(0,2)
mean2 = rep(2,2)
mean3 = rep(4,2)
X=matrix(rep(0,n*2),n,2)
for(j in 1:k) X[j,]=t(chol(sigma1))%*%rnorm(2)
for(j in (k+1):n) X[j,]=t(chol(sigma2))%*%rnorm(2)
X[1:m1,]=X[1:m1,]+mean1
X[(m1+1):m2,]=X[(m1+1):m2,]+mean2
X[(m2+1):n,]=X[(m2+1):n,]+mean3
kn(X,b=c(0.5,0.75))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.