Tools for data-driven statistical analysis using local polynomial regression and kernel density estimation methods as described in Calonico, Cattaneo and Farrell (2018, <doi:10.1080/01621459.2017.1285776>): 'lprobust()' for local polynomial point estimation and robust bias-corrected inference, 'lpbwselect()' for local polynomial bandwidth selection, 'kdrobust()' for kernel density point estimation and robust bias-corrected inference, 'kdbwselect()' for kernel density bandwidth selection, and 'nprobust.plot()' for plotting results. The main methodological and numerical features of this package are described in Calonico, Cattaneo and Farrell (2019, <doi:10.18637/jss.v091.i08>).
Package details |
|
---|---|
Author | Sebastian Calonico [aut, cre], Matias D. Cattaneo [aut], Max H. Farrell [aut] |
Maintainer | Sebastian Calonico <scalonico@ucdavis.edu> |
License | GPL-2 |
Version | 0.5.0 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.