Description Usage Arguments Value Author(s) References See Also Examples
kdrobust
implements kernel density point estimators, with robust bias-corrected confidence intervals and inference procedures developed in Calonico, Cattaneo and Farrell (2018). See also Calonico, Cattaneo and Farrell (2020) for related optimality results.
It also implements other estimation and inference procedures available in the literature. See Wand and Jones (1995) for background references.
Companion commands: kdbwselect
for kernel density data-driven bandwidth selection, and nprobust.plot
for plotting results.
A detailed introduction to this command is given in Calonico, Cattaneo and Farrell (2019). For more details, and related Stata and R packages useful for empirical analysis, visit https://nppackages.github.io/.
1 2 |
x |
independent variable. |
eval |
vector of evaluation point(s). By default it uses 30 equally spaced points over to support of |
neval |
number of quantile-spaced evaluation points on support of |
h |
main bandwidth used to construct the kernel density point estimator. Can be either scalar (same bandwidth for all evaluation points), or vector of same dimension as |
b |
bias bandwidth used to construct the bias-correction estimator. Can be either scalar (same bandwidth for all evaluation points), or vector of same dimension as |
rho |
Sets |
kernel |
kernel function used to construct local polynomial estimators. Options are |
bwselect |
bandwidth selection procedure to be used via
Note: MSE = Mean Square Error; IMSE = Integrated Mean Squared Error; CE = Coverage Error; DPI = Direct Plug-in; ROT = Rule-of-Thumb. For details on implementation see Calonico, Cattaneo and Farrell (2019). |
bwcheck |
if a positive integer is provided, then the selected bandwidth is enlarged so that at least |
imsegrid |
number of evaluations points used to compute the IMSE bandwidth selector. Default is |
level |
confidence level used for confidence intervals; default is |
subset |
optional rule specifying a subset of observations to be used. |
Estimate |
A matrix containing |
opt |
A list containing options passed to the function. |
Sebastian Calonico, Columbia University, New York, NY. sebastian.calonico@columbia.edu.
Matias D. Cattaneo, Princeton University, Princeton, NJ. cattaneo@princeton.edu.
Max H. Farrell, University of Chicago, Chicago, IL. max.farrell@chicagobooth.edu.
Calonico, S., M. D. Cattaneo, and M. H. Farrell. 2018. On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference. Journal of the American Statistical Association, 113(522): 767-779. doi: 10.1080/01621459.2017.1285776.
Calonico, S., M. D. Cattaneo, and M. H. Farrell. 2019. nprobust: Nonparametric Kernel-Based Estimation and Robust Bias-Corrected Inference. Journal of Statistical Software, 91(8): 1-33. doi: 10.18637/jss.v091.i08.
Calonico, S., M. D. Cattaneo, and M. H. Farrell. 2020. Coverage Error Optimal Confidence Intervals for Local Polynomial Regression. Working Paper.
Fan, J., and Gijbels, I. 1996. Local polynomial modelling and its applications, London: Chapman and Hall.
Wand, M., and Jones, M. 1995. Kernel Smoothing, Florida: Chapman & Hall/CRC.
1 2 3 |
Call: kdrobust
Sample size (n) = 500
Kernel order for point estimation (p) = 2
Kernel function = Epanechnikov
Bandwidth selection method = mse-dpi
=============================================================================
Point Std. Robust B.C.
eval bw Eff.n Est. Error [ 95% C.I. ]
=============================================================================
1 -3.215 0.579 4 0.003 0.003 [-0.003 , 0.007]
2 -2.994 0.550 10 0.005 0.003 [-0.002 , 0.010]
3 -2.773 0.537 15 0.007 0.004 [-0.001 , 0.013]
4 -2.552 0.561 23 0.016 0.005 [0.003 , 0.025]
5 -2.331 0.594 36 0.029 0.008 [0.012 , 0.042]
-----------------------------------------------------------------------------
6 -2.110 0.622 50 0.043 0.009 [0.022 , 0.058]
7 -1.889 0.690 81 0.065 0.010 [0.042 , 0.082]
8 -1.668 0.849 118 0.103 0.011 [0.078 , 0.122]
9 -1.447 1.298 226 0.163 0.010 [0.139 , 0.181]
10 -1.225 1.690 313 0.208 0.008 [0.192 , 0.231]
-----------------------------------------------------------------------------
11 -1.004 1.058 266 0.254 0.013 [0.232 , 0.286]
12 -0.783 0.884 281 0.310 0.015 [0.285 , 0.348]
13 -0.562 0.807 304 0.359 0.017 [0.331 , 0.400]
14 -0.341 0.766 318 0.384 0.018 [0.355 , 0.427]
15 -0.120 0.746 336 0.387 0.018 [0.357 , 0.431]
-----------------------------------------------------------------------------
16 0.101 0.753 333 0.375 0.018 [0.346 , 0.418]
17 0.322 0.791 309 0.353 0.017 [0.325 , 0.393]
18 0.543 0.869 291 0.314 0.015 [0.288 , 0.352]
19 0.764 1.023 279 0.272 0.013 [0.249 , 0.305]
20 0.986 1.425 318 0.231 0.009 [0.212 , 0.257]
-----------------------------------------------------------------------------
21 1.207 2.341 382 0.195 0.005 [0.175 , 0.210]
22 1.428 1.141 181 0.154 0.010 [0.128 , 0.173]
23 1.649 0.894 115 0.109 0.011 [0.083 , 0.128]
24 1.870 0.799 81 0.076 0.010 [0.053 , 0.093]
25 2.091 0.715 56 0.049 0.009 [0.029 , 0.064]
-----------------------------------------------------------------------------
26 2.312 0.643 39 0.031 0.008 [0.014 , 0.044]
27 2.533 0.601 26 0.018 0.006 [0.005 , 0.028]
28 2.754 0.577 18 0.010 0.004 [0.000 , 0.016]
29 2.976 0.552 10 0.004 0.003 [-0.002 , 0.009]
30 3.197 0.550 6 0.003 0.003 [-0.003 , 0.007]
-----------------------------------------------------------------------------
=============================================================================
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.