Description Details Author(s) References
This package provides tools for data-driven statistical analysis using local polynomial regression (LPR) and kernel density estimation (KDE) methods as described in Calonico, Cattaneo and Farrell (2018): lprobust
for local polynomial point estimation and robust bias-corrected inference, lpbwselect
for local polynomial bandwidth selection, kdrobust
for kernel density point estimation and robust bias-corrected inference, kdbwselect
for kernel density bandwidth selection, and nprobust.plot
for plotting results. The main methodological and numerical features of this package are described in Calonico, Cattaneo and Farrell (2019).
Package: | nprobust |
Type: | Package |
Version: | 0.4.0 |
Date: | 2020-08-24 |
License: | GPL-2 |
Function for LPR estimation and inference: lprobust
Function for LPR bandwidth selection: lpbwselect
Function for KDE estimation and inference: kdrobust
Function for KDE bandwidth selection: kdbwselect
Function for graphical analysis: nprobust.plot
Sebastian Calonico, Columbia University, New York, NY. sebastian.calonico@columbia.edu.
Matias D. Cattaneo, Princeton University, Princeton, NJ. cattaneo@princeton.edu.
Max H. Farrell, University of Chicago, Chicago, IL. max.farrell@chicagobooth.edu.
Calonico, S., M. D. Cattaneo, and M. H. Farrell. 2018. On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference. Journal of the American Statistical Association, 113(522): 767-779. doi: 10.1080/01621459.2017.1285776.
Calonico, S., M. D. Cattaneo, and M. H. Farrell. 2019. nprobust: Nonparametric Kernel-Based Estimation and Robust Bias-Corrected Inference. Journal of Statistical Software, 91(8): 1-33. doi: 10.18637/jss.v091.i08.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.