Description Usage Arguments Value Author(s) References See Also Examples
kdbwselect
implements bandwidth selectors for kernel density point estimators and inference procedures developed in Calonico, Cattaneo and Farrell (2018). See also Calonico, Cattaneo and Farrell (2020) for related optimality results.
It also implements other bandwidth selectors available in the literature. See Wand and Jones (1995) for background references.
Companion commands are: kdrobust
for kernel density point estimation and inference procedures.
A detailed introduction to this command is given in Calonico, Cattaneo and Farrell (2019). For more details, and related Stata and R packages useful for empirical analysis, visit https://nppackages.github.io/.
1 2 |
x |
independent variable. |
eval |
vector of evaluation point(s). By default it uses 30 equally spaced points over to support of |
neval |
number of quantile-spaced evaluation points on support of |
kernel |
kernel function used to construct the kernel estimators. Options are |
bwselect |
bandwidth selection procedure to be used. Options are:
Note: MSE = Mean Square Error; IMSE = Integrated Mean Squared Error; CE = Coverage Error; DPI = Direct Plug-in; ROT = Rule-of-Thumb. For details on implementation see Calonico, Cattaneo and Farrell (2019). |
bwcheck |
if a positive integer is provided, then the selected bandwidth is enlarged so that at least |
imsegrid |
number of evaluations points used to compute the IMSE bandwidth selector. Default is |
subset |
optional rule specifying a subset of observations to be used. |
Estimate |
A matrix containing |
opt |
A list containing options passed to the function. |
Sebastian Calonico, Columbia University, New York, NY. sebastian.calonico@columbia.edu.
Matias D. Cattaneo, Princeton University, Princeton, NJ. cattaneo@princeton.edu.
Max H. Farrell, University of Chicago, Chicago, IL. max.farrell@chicagobooth.edu.
Calonico, S., M. D. Cattaneo, and M. H. Farrell. 2018. On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference. Journal of the American Statistical Association, 113(522): 767-779. doi: 10.1080/01621459.2017.1285776.
Calonico, S., M. D. Cattaneo, and M. H. Farrell. 2019. nprobust: Nonparametric Kernel-Based Estimation and Robust Bias-Corrected Inference. Journal of Statistical Software, 91(8). doi: 10.18637/jss.v091.i08.
Calonico, S., M. D. Cattaneo, and M. H. Farrell. 2020. Coverage Error Optimal Confidence Intervals for Local Polynomial Regression. Working Paper.
Fan, J., and Gijbels, I. 1996. Local polynomial modelling and its applications, London: Chapman and Hall.
Wand, M., and Jones, M. 1995. Kernel Smoothing, Florida: Chapman & Hall/CRC.
1 2 3 | x <- rnorm(500)
est <- kdbwselect(x)
summary(est)
|
Call: kdbwselect
Sample size (n) = 500
Kernel function = Epanechnikov
Bandwidth selection method = mse-dpi
=======================================
eval h b
=======================================
1 -2.565 0.553 2.067
2 -2.382 0.579 2.067
3 -2.198 0.591 2.067
4 -2.014 0.632 2.067
5 -1.830 0.703 2.067
---------------------------------------
6 -1.646 0.821 2.067
7 -1.462 1.044 2.067
8 -1.279 1.705 2.067
9 -1.095 1.679 2.067
10 -0.911 1.096 2.067
---------------------------------------
11 -0.727 0.926 2.067
12 -0.543 0.835 2.067
13 -0.359 0.785 2.067
14 -0.176 0.757 2.067
15 0.008 0.745 2.067
---------------------------------------
16 0.192 0.745 2.067
17 0.376 0.767 2.067
18 0.560 0.814 2.067
19 0.744 0.893 2.067
20 0.927 1.052 2.067
---------------------------------------
21 1.111 1.503 2.067
22 1.295 1.993 2.067
23 1.479 1.177 2.067
24 1.663 0.968 2.067
25 1.847 0.832 2.067
---------------------------------------
26 2.031 0.724 2.067
27 2.214 0.654 2.067
28 2.398 0.607 2.067
29 2.582 0.596 2.067
30 2.766 0.583 2.067
---------------------------------------
=======================================
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.