Description Usage Format Details References Examples
This dataset includes the true-positives (TP), false-positives (FP), true-negatives (TN) and false-negatives (FN) reported by 9 different papers which study the use of the Interleukin 6 (IL6) as a marker for the early detection of neonatal sepsis.
1 |
A data frame with 19 observations of the following 5 variables.
Authora vector assigning different numbers to each paper
TPvector of true positives
FPvector of false positives
FNvector of false negatives
TNvector of true negatives
In those papers providing more than one pair of Sensitivity-Specificity all of them are collected.
Martinez-Camblor P., 2017, Fully non-parametric receiver operating characteristic curve estimation for random-effects meta-analysis, Statistical Methods in Medical Research, 26(1), 5-20.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | # Load the dataset
data(interleukin6)
# Plot pairs (FPR, TPR) for each Author
attach(interleukin6)
TPR <- TP/(TP+FN)
FPR <- FP/(FP+TN)
plot(FPR, TPR, xlim=c(0,1), ylim=c(0,1), lwd=10, pch=1, col='gray', xlab="False-Positive Rate",
ylab="True-Positive Rate", main=paste("ROC curve interpolation"))
S <- unique(Author)
ind <- order(Author, FPR, TPR)
ord.data <- cbind(Author[ind], FPR[ind], TPR[ind])
roc.j <- sapply(S, function(j){
lines(c(0,ord.data[Author==j,2],1), c(0,ord.data[Author==j,3],1), col='gray')})
for(i in 1:19){text(ord.data[i,2],ord.data[i,3],ord.data[i,1],cex=0.5)}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.