View source: R/crowdingDist4frnt.R
crowdingDist4frnt | R Documentation |
This function estimates the density of solutions surrounding a particular solution within each front. It calculates the crowding distances of solutions according to their objectives and those within the same front.
crowdingDist4frnt(pop, rnk, rng)
pop |
Population matrix including decision variables, objective functions, and nondomination rank |
rnk |
List of solution indices for each front |
rng |
Vector of each objective function range, i.e. the difference between the maximum and minimum objective function value of each objective |
Return a matrix of crowding distances of all solutions
Ching-Shih (Vince) Tsou cstsou@mail.ntcb.edu.tw
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002), " A fast and elitist multiobjective genetic algorithm: NSGA-II", IEEE Transactions on Evolutionary Computation, 6(2), 182-197.
fastNonDominatedSorting
library(mco) popSize <- 50 lowerBounds <- rep(0,30) upperBounds <- rep(1,30) varNo <- length(lowerBounds) objDim <- 2 set.seed(1234) population <- t(sapply(1:popSize, function(u) array(runif(length(lowerBounds), lowerBounds,upperBounds)))) population <- cbind(population, t(apply(population,1,zdt2))) ranking <- fastNonDominatedSorting(population[,(varNo+1):(varNo+objDim)]) rnkIndex <- integer(popSize) i <- 1 while (i <= length(ranking)) { rnkIndex[ranking[[i]]] <- i i <- i + 1 } population <- cbind(population,rnkIndex) objRange <- apply(population[,(varNo+1):(varNo+objDim)], 2, max) - apply(population[,(varNo+1):(varNo+objDim)], 2, min) cd <- crowdingDist4frnt(population,ranking,objRange) cd
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.