Tournaments are played among several solutions. The best one is chosen according to their nondomination levels and crowding distances. And it is placed in the mating pool.

1 | ```
tournamentSelection(pop, pool_size, tour_size)
``` |

`pop` |
Population matrix with nondomination rank and crowding distance |

`pool_size` |
Size of mating pool, usually same as the population size |

`tour_size` |
Size of tournament, the selection pressure can be adjusted by varying the tournament size |

Return the mating pool with decision variables, objective functions, nondomination level, and crowding distance

Ching-Shih (Vince) Tsou cstsou@mail.ntcb.edu.tw

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002), " A fast and elitist multiobjective genetic algorithm: NSGA-II", *IEEE Transactions on Evolutionary Computation*, **6(2)**, 182-197.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ```
library(mco)
tourSize <- popSize <- 10
lowerBounds <- rep(0,30)
upperBounds <- rep(1,30)
varNo <- length(lowerBounds)
objDim <- 2
set.seed(1234)
population <- t(sapply(1:popSize, function(u) array(runif(length(lowerBounds),
lowerBounds,upperBounds))))
population <- cbind(population, t(apply(population,1,zdt3)))
ranking <- fastNonDominatedSorting(population[,(varNo+1):(varNo+objDim)])
rnkIndex <- integer(popSize)
i <- 1
while (i <= length(ranking)) {
rnkIndex[ranking[[i]]] <- i
i <- i + 1
}
population <- cbind(population,rnkIndex);
objRange <- apply(population[,(varNo+1):(varNo+objDim)], 2, max) -
apply(population[,(varNo+1):(varNo+objDim)], 2, min);
cd <- crowdingDist4frnt(population,ranking,objRange)
population <- cbind(population,apply(cd,1,sum))
matingPool <- tournamentSelection(population,popSize,tourSize)
matingPool
``` |

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.