modpower | R Documentation |
Calculates powers and orders modulo m
.
modpower(n, k, m) modorder(n, m)
n, k, m |
Natural numbers, |
modpower
calculates n
to the power of k
modulo
m
.
Uses modular exponentiation, as described in the Wikipedia article.
modorder
calculates the order of n
in the multiplicative
group module m
. n
and m
must be coprime.
Uses brute force, trick to use binary expansion and square is not more
efficient in an R implementation.
Natural number.
This function is not vectorized.
primroot
modpower(2, 100, 7) #=> 2 modpower(3, 100, 7) #=> 4 modorder(7, 17) #=> 16, i.e. 7 is a primitive root mod 17 ## Gauss' table of primitive roots modulo prime numbers < 100 proots <- c(2, 2, 3, 2, 2, 6, 5, 10, 10, 10, 2, 2, 10, 17, 5, 5, 6, 28, 10, 10, 26, 10, 10, 5, 12, 62, 5, 29, 11, 50, 30, 10) P <- Primes(100) for (i in seq(along=P)) { cat(P[i], "\t", modorder(proots[i], P[i]), proots[i], "\t", "\n") } ## Not run: ## Lehmann's primality test lehmann_test <- function(n, ntry = 25) { if (!is.numeric(n) || ceiling(n) != floor(n) || n < 0) stop("Argument 'n' must be a natural number") if (n >= 9e7) stop("Argument 'n' should be smaller than 9e7.") if (n < 2) return(FALSE) else if (n == 2) return(TRUE) else if (n > 2 && n %% 2 == 0) return(FALSE) k <- floor(ntry) if (k < 1) k <- 1 if (k > n-2) a <- 2:(n-1) else a <- sample(2:(n-1), k, replace = FALSE) for (i in 1:length(a)) { m <- modpower(a[i], (n-1)/2, n) if (m != 1 && m != n-1) return(FALSE) } return(TRUE) } ## Examples for (i in seq(1001, 1011, by = 2)) if (lehmann_test(i)) cat(i, "\n") # 1009 system.time(lehmann_test(27644437, 50)) # TRUE # user system elapsed # 0.086 0.151 0.235 ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.