pythagorean: Pythagorean Triples

Description Usage Arguments Details Value References Examples

Description

Generates all primitive Pythagorean triples (a, b, c) of integers such that a^2 + b^2 = c^2, where a, b, c are coprime (have no common divisor) and c_1 ≤ c ≤ c_2.

Usage

1

Arguments

c1, c2

lower and upper limit of the hypothenuses c.

Details

If (a, b, c) is a primitive Pythagorean triple, there are integers m, n with 1 ≤ n < m such that

a = m^2 - n^2, b = 2 m n, c = m^2 + n^2

with gcd(m, n) = 1 and m - n being odd.

Value

Returns a matrix, one row for each Pythagorean triple, of the form (m n a b c).

References

https://mathworld.wolfram.com/PythagoreanTriple.html

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
pythagorean_triples(100, 200)
##       [,1] [,2] [,3] [,4] [,5]
##  [1,]   10    1   99   20  101
##  [2,]   10    3   91   60  109
##  [3,]    8    7   15  112  113
##  [4,]   11    2  117   44  125
##  [5,]   11    4  105   88  137
##  [6,]    9    8   17  144  145
##  [7,]   12    1  143   24  145
##  [8,]   10    7   51  140  149
##  [9,]   11    6   85  132  157
## [10,]   12    5  119  120  169
## [11,]   13    2  165   52  173
## [12,]   10    9   19  180  181
## [13,]   11    8   57  176  185
## [14,]   13    4  153  104  185
## [15,]   12    7   95  168  193
## [16,]   14    1  195   28  197

Example output

      [,1] [,2] [,3] [,4] [,5]
 [1,]   10    1   99   20  101
 [2,]   10    3   91   60  109
 [3,]    8    7   15  112  113
 [4,]   11    2  117   44  125
 [5,]   11    4  105   88  137
 [6,]    9    8   17  144  145
 [7,]   12    1  143   24  145
 [8,]   10    7   51  140  149
 [9,]   11    6   85  132  157
[10,]   12    5  119  120  169
[11,]   13    2  165   52  173
[12,]   10    9   19  180  181
[13,]   11    8   57  176  185
[14,]   13    4  153  104  185
[15,]   12    7   95  168  193
[16,]   14    1  195   28  197

numbers documentation built on May 15, 2021, 1:08 a.m.