humanDetection: Hyper Human Influence

humanDetectionR Documentation

Hyper Human Influence

Description

Detect occurrences in heavily human-impacted environments

Usage

humanDetection(
  df,
  xf,
  yf,
  method = "all",
  ras.hii,
  .th.human.influence,
  .points.proj4string,
  do = TRUE,
  verbose = FALSE,
  output.dir
)

Arguments

df

Data.frame of species occurrences

xf

the field in the data frame containing the x coordinates

yf

the field in the data frame containing the y coordinates

method

character. Indicate which tests to use. Default 'all'. See Details

ras.hii

raster. Raster map of human influence index use

.th.human.influence

numeric. Threhold to identify places of high human influence

.points.proj4string

proj4string argument for df

do

logical. Should range analysis be performed? Default TRUE

verbose

logical. Print messages? Default FALSE

output.dir

character. Output directory

Details

It uses several methods to detect records in high human influence records.
Current implemented methods are:
'hii' using a raster and a threhold of human influence 'urban' using a layer of urban areas. Method implemented in CoordinateCleaner package.

Value

data.frame

Author(s)

Josep M Serra-Diaz (pep.serradiaz@agroparistech.fr). A Zizka (CoordinateCleaner functions)

See Also

cc_urb for CoordinateCleaner functions

Other analysis: .nearestcell3(), centroidDetection(), countryStatusRangeAnalysis(), duplicatesexcludeAnalysis(), geoEnvAccuracy()


occTest documentation built on Nov. 18, 2022, 5:07 p.m.