Nothing
params <-
list(EVAL = FALSE)
## ----eval = FALSE-----------------------------------------------------------------------
#
# # From CRAN would be
# install.packages("ohun")
#
# #load package
# library(ohun)
#
## ----eval = FALSE-----------------------------------------------------------------------
#
# # install package
# remotes::install_github("maRce10/ohun")
#
# #load packages
# library(ohun)
# library(tuneR)
# library(warbleR)
## ----global options, echo = FALSE, message=FALSE, warning=FALSE-------------------------
#load packages
library(ohun)
library(tuneR)
library(warbleR)
# for spectrograms
par(mar = c(5, 4, 2, 2) + 0.1)
stopifnot(require(knitr))
options(width = 90)
opts_chunk$set(
comment = NA,
# eval = if (isTRUE(exists("params"))) params$EVAL else FALSE,
dev = "jpeg",
dpi = 100,
fig.width=10,
out.width = "100%",
fig.align = "center"
)
## ----eval = TRUE------------------------------------------------------------------------
# load example data
data("lbh1", "lbh2", "lbh_reference")
# save sound files
tuneR::writeWave(lbh1, file.path(tempdir(), "lbh1.wav"))
tuneR::writeWave(lbh2, file.path(tempdir(), "lbh2.wav"))
# select a subset of the data
lbh1_reference <-
lbh_reference[lbh_reference$sound.files == "lbh1.wav",]
# print data
lbh1_reference
## ----eval = TRUE, fig.asp=0.4-----------------------------------------------------------
# print spectrogram
label_spectro(wave = lbh1, reference = lbh1_reference, hop.size = 10, ovlp = 50, flim = c(1, 10))
## ----eval = FALSE, echo = TRUE----------------------------------------------------------
# # get mean structure template
# template <-
# get_templates(reference = lbh1_reference, path = tempdir())
## ----fig.asp=0.7, out.width="80%", eval = TRUE, echo = FALSE----------------------------
par(mar = c(5, 4, 1, 1), bg = "white")
# get mean structure template
template <-
get_templates(reference = lbh1_reference, path = tempdir())
## ----eval = FALSE, echo = TRUE----------------------------------------------------------
# # get 3 templates
# get_templates(reference = lbh1_reference,
# n.sub.spaces = 3, path = tempdir())
## ----fig.asp=0.7, out.width="80%", eval = TRUE, echo = FALSE----------------------------
par(mar = c(5, 4, 1, 1), bg = "white")
# get 3 templates
templates <- get_templates(reference = lbh1_reference,
n.sub.spaces = 3, path = tempdir())
## ---------------------------------------------------------------------------------------
# get correlations
correlations <-
template_correlator(templates = template,
files = "lbh1.wav",
path = tempdir())
## ---------------------------------------------------------------------------------------
# print
correlations
## ---------------------------------------------------------------------------------------
# run detection
detection <-
template_detector(template.correlations = correlations, threshold = 0.7)
detection
## ----fig.asp=0.5------------------------------------------------------------------------
# plot spectrogram
label_spectro(
wave = lbh1,
detection = detection,
template.correlation = correlations[[1]],
flim = c(0, 10),
threshold = 0.7,
hop.size = 10, ovlp = 50)
## ---------------------------------------------------------------------------------------
#diagnose
diagnose_detection(reference = lbh1_reference, detection = detection)
## ---------------------------------------------------------------------------------------
# run optimization
optimization <-
optimize_template_detector(
template.correlations = correlations,
reference = lbh1_reference,
threshold = seq(0.1, 0.5, 0.1)
)
# print output
optimization
## ---------------------------------------------------------------------------------------
# run optimization
optimize_template_detector(
template.correlations = correlations,
reference = lbh1_reference,
threshold = c(0.6, 0.7),
previous.output = optimization
)
## ---------------------------------------------------------------------------------------
# get correlations
correlations <-
template_correlator(
templates = lbh1_reference[c(1, 10),],
files = "lbh1.wav",
path = tempdir()
)
# run detection
detection <-
template_detector(template.correlations = correlations, threshold = 0.6)
## ---------------------------------------------------------------------------------------
#diagnose
diagnose_detection(reference = lbh1_reference, detection = detection)
## ---------------------------------------------------------------------------------------
#diagnose
diagnose_detection(reference = lbh1_reference, detection = detection, by = "template")
## ---------------------------------------------------------------------------------------
# labeling detection
labeled <-
label_detection(reference = lbh_reference, detection = detection, by = "template")
## ---------------------------------------------------------------------------------------
# filter
consensus <- consensus_detection(detection = labeled, by = "scores")
# diagnose
diagnose_detection(reference = lbh1_reference, detection = consensus)
## ----session info, echo=FALSE-----------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.