Nothing
#' Plot the transition times of a model
#'
#' `plot_transition_times()` plots a the survival functions for the transition
#' times in a multi-state model.
#'
#' @template param-model
#' @template param-parameter_sample
#' @template param-parameter_sample
#' @template param-seed
#' @template param-nsim
#' @template param-warmup
#' @template param-dt-params
#' @template param-nuts_control
#' @param confidence numeric in (0, 1) confidence level for point-wise
#' confidence bands around mean; none plotted if NULL.
#' @template param-dotdotdot
#'
#' @return a [ggplot2::ggplot] object
#'
#' @seealso [plot_pfs()] [plot_response_probability()]
#'
#' @examples
#' \dontrun{
#' mdl <- create_srpmodel(A = define_srp_prior())
#' plot_transition_times(mdl)
#' }
#' @export
plot_transition_times <- function(model, # nolint
parameter_sample = NULL,
seed = 42L,
nsim = 500L,
warmup = 250,
nuts_control = list(),
dt_interval = NULL,
dt_n_grid = 25,
dt_expand = 1.1,
dt_grid = NULL,
confidence = NULL,
...) {
checkmate::check_class(model, classes = c("srpmodel", "list"))
if (is.null(parameter_sample)) { # sample parameters from prior if none given
parameter_sample <- sample_prior(model,
seed = seed, nsim = nsim,
warmup = warmup,
nuts_control = nuts_control, ...)
}
if (is.null(dt_grid)) {
# determine plotting grid
dt_grid <- get_dt_grid(model, parameter_sample, dt_interval,
dt_n_grid, dt_expand, seed)
}
# convert parameters to tibble and prepare for plotting
if (!is.null(confidence)) {
alpha_half <- (1 - confidence) / 2
} else {
alpha_half <- 0
}
tbl <- parameter_sample_to_tibble(model, parameter_sample) %>%
filter(.data$parameter %in% c("shape", "scale")) %>%
tidyr::pivot_wider(
names_from = "parameter",
values_from = "value"
) %>%
tidyr::expand_grid(dt = dt_grid) %>%
mutate(
survival = 1 - stats::pweibull(.data$dt,
shape = .data$shape, scale = .data$scale)
) %>%
group_by(.data$group_id, .data$transition, .data$dt) %>%
summarize(
lo = stats::quantile(.data$survival, probs = alpha_half) %>%
as.numeric(),
hi = stats::quantile(.data$survival, probs = 1 - alpha_half) %>%
as.numeric(),
survival = mean(.data$survival),
.groups = "drop"
) %>%
filter(
is.finite(.data$survival)
) %>%
mutate(
transition = case_when(
.data$transition == 1 ~ "stable to response",
.data$transition == 2 ~ "stable to progression",
.data$transition == 3 ~ "response to progression"
) %>%
factor(levels = c(
"stable to response", "stable to progression",
"response to progression"
))
)
plt <- ggplot2::ggplot(tbl)
if (!is.null(confidence)) {
plt <- plt + ggplot2::geom_ribbon(
ggplot2::aes(.data$dt, ymin = .data$lo,
ymax = .data$hi, fill = .data$group_id),
alpha = 0.2
)
}
plt <- plt + ggplot2::geom_line(ggplot2::aes(.data$dt, .data$survival,
color = .data$group_id)) +
ggplot2::labs(x = "time to next event", y = "'Survival' fraction") +
ggplot2::scale_color_discrete("") +
ggplot2::scale_fill_discrete("") +
ggplot2::scale_y_continuous(
limits = c(0, 1),
breaks = seq(0, 1, by = .1)
) +
ggplot2::facet_wrap(~ .data$transition, nrow = 1) +
ggplot2::theme(
legend.position = "top",
panel.grid.minor = ggplot2::element_blank(),
panel.spacing = ggplot2::unit(1.5, "lines")
)
# add plotting data to return value
attr(plt, "data") <- tbl
return(plt)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.