Online Prediction by ExpeRt Aggregation

Description

The package opera performs, for regression-oriented time-series, predictions by combining a finite set of forecasts provided by the user. More formally, it considers a sequence of observations Y (such as electricity consumption, or any bounded time series) to be predicted step by step. At each time instance t, a finite set of experts (basicly some based forecasters) provide predictions x of the next observation in y. This package proposes several adaptive and robust methods to combine the expert forecasts based on their past performance.

Author(s)

Pierre Gaillard <pierre@gaillard.me>

References

Prediction, Learning, and Games. N. Cesa-Bianchi and G. Lugosi.

Forecasting the electricity consumption by aggregating specialized experts; a review of sequential aggregation of specialized experts, with an application to Slovakian an French contry-wide one-day-ahead (half-)hourly predictions, Machine Learning, in press, 2012. Marie Devaine, Pierre Gaillard, Yannig Goude, and Gilles Stoltz

Contributions to online robust aggregation: work on the approximation error and on probabilistic forecasting. Pierre Gaillard. PhD Thesis, University Paris-Sud, 2015.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#' 
library('opera')  # load the package
set.seed(1)

# Example: find the best one week ahead forecasting strategy (weekly data)
# packages
library(mgcv)

# import data
data(electric_load)
idx_data_test <- 620:nrow(electric_load)
data_train <- electric_load[-idx_data_test, ]
data_test <- electric_load[idx_data_test, ]

# Build the expert forecasts 
# ##########################

# 1) A generalized additive model
gam.fit <- gam(Load ~ s(IPI) + s(Temp) + s(Time, k=3) + 
                s(Load1) + as.factor(NumWeek), data = data_train)
gam.forecast <- predict(gam.fit, newdata = data_test)

# 2) An online autoregressive model on the residuals of a medium term model

# Medium term model to remove trend and seasonality (using generalized additive model)
detrend.fit <- gam(Load ~ s(Time,k=3) + s(NumWeek) + s(Temp) + s(IPI), data = data_train)
electric_load$Trend <- c(predict(detrend.fit), predict(detrend.fit,newdata = data_test))
electric_load$Load.detrend <- electric_load$Load - electric_load$Trend

# Residual analysis
ar.forecast <- numeric(length(idx_data_test))
for (i in seq(idx_data_test)) {
 ar.fit <- ar(electric_load$Load.detrend[1:(idx_data_test[i] - 1)])
 ar.forecast[i] <- as.numeric(predict(ar.fit)$pred) + electric_load$Trend[idx_data_test[i]]
}

# Aggregation of experts
###########################

X <- cbind(gam.forecast, ar.forecast)
colnames(X) <- c('gam', 'ar')
Y <- data_test$Load

matplot(cbind(Y, X), type = 'l', col = 1:6, ylab = 'Weekly load', xlab = 'Week')


# How good are the expert? Look at the oracles
oracle.convex <- oracle(Y = Y, experts = X, loss.type = 'square', model = 'convex')
plot(oracle.convex)
oracle.convex

# Is a single expert the best over time ? Are there breaks ?
oracle.shift <- oracle(Y = Y, experts = X, loss.type = 'percentage', model = 'shifting')
plot(oracle.shift)
oracle.shift

# Online aggregation of the experts with BOA
#############################################

# Initialize the aggregation rule
m0.BOA <- mixture(model = 'BOA', loss.type = 'square')

# Perform online prediction using BOA There are 3 equivalent possibilities 1)
# start with an empty model and update the model sequentially
m1.BOA <- m0.BOA
for (i in 1:length(Y)) {
 m1.BOA <- predict(m1.BOA, newexperts = X[i, ], newY = Y[i])
}

# 2) perform online prediction directly from the empty model
m2.BOA <- predict(m0.BOA, newexpert = X, newY = Y, online = TRUE)

# 3) perform the online aggregation directly
m3.BOA <- mixture(Y = Y, experts = X, model = 'BOA', loss.type = 'square')

# These predictions are equivalent:
identical(m1.BOA, m2.BOA)  # TRUE
identical(m1.BOA, m3.BOA)  # TRUE

# Display the results
summary(m3.BOA)
plot(m1.BOA)