Nothing
#' Create a design object for the optimal conditional error function.
#' @name getDesignOptimalConditionalErrorFunction
#'
#' @description This function returns a design object which contains all important parameters for the specification of the optimal conditional error function.
#' The returned object is of class \code{TrialDesignOptimalConditionalError} and can be passed to other package functions.
#'
#'
#' @details
#' The design object contains the information required to determine the specific setting of the optimal conditional error function and can be passed to other package functions.
#' From the given user specifications, the constant to achieve level condition for control of the overall type I error rate as well as the constants to ensure a non-increasing optimal CEF (if required) are automatically calculated.
#'
#' @section Likelihood ratio distribution:
#' To calculate the optimal conditional error function, an assumption about the true parameter under which the second-stage information is to be minimised is required.
#' Various options are available and can be specified via the argument \code{likelihoodRatioDistribution}:
#' \itemize{
#' \item \code{likelihoodRatioDistribution="fixed"}: calculates the likelihood ratio for a fixed \eqn{\Delta}. The non-centrality parameter of the likelihood ratio \eqn{\vartheta} is then computed as \code{deltaLR}*\code{sqrt(firstStageInformation)} and the likelihood ratio is calculated as:
#' \deqn{l(p_1) = e^{\Phi^{-1}(1-p_1)\vartheta - \vartheta^2/2}.} \code{deltaLR} may also contain multiple elements, in which case a weighted likelihood ratio is calculated for the given values. Unless positive weights that sum to 1 are provided by the argument \code{weightsDeltaLR}, equal weights are assumed.
#' \item \code{likelihoodRatioDistribution="normal"}: calculates the likelihood ratio for a normally distributed prior of \eqn{\vartheta} with mean \code{deltaLR}*\code{sqrt(firstStageInformation)} (\eqn{\mu}) and standard deviation \code{tauLR}*\code{sqrt(firstStageInformation)} (\eqn{\sigma}). The parameters \code{deltaLR} and \code{tauLR} must be specified on the mean difference scale.
#' \deqn{l(p_1) = (1+\sigma^2)^{-\frac{1}{2}}\cdot e^{-(\mu/\sigma)^2/2 + (\sigma\Phi^{-1}(1-p_1) + \mu/\sigma)^2 / (2\cdot (1+\sigma^2))}}
#' \item \code{likelihoodRatioDistribution="exp"}: calculates the likelihood ratio for an exponentially distributed prior of \eqn{\vartheta} with mean \code{kappaLR}*\code{sqrt(firstStageInformation)} (\eqn{\eta}). The likelihood ratio is then calculated as:
#' \deqn{l(p_1) = \kappa \cdot \sqrt{2\pi} \cdot e^{(\Phi^{-1}(1-p_1)-\eta)^2/2} \cdot \Phi(\Phi^{-1}(1-p_1)-\eta)}
#' \item \code{likelihoodRatioDistribution="unif"}: calculates the likelihood ratio for a uniformly distributed prior of \eqn{\vartheta} on the support \eqn{[0, \Delta\cdot\sqrt{I_1}]}, where \eqn{\Delta} is specified as \code{deltaMaxLR} and \eqn{I_1} is the \code{firstStageInformation}.
#' \deqn{l(p_1) = \frac{\sqrt{2\pi}}{\Delta\cdot\sqrt{I_1}} \cdot e^{\Phi^{-1}(1-p_1)^2/2} \cdot (\Phi(\Delta\cdot\sqrt{I_1} - \Phi^{-1}(1-p_1))-p_1)}
#' \item \code{likelihoodRatioDistribution="maxlr"}: the non-centrality parameter \eqn{\vartheta} is estimated from the data and no additional parameters must be specified. The likelihood ratio is estimated from the data as:
#' \deqn{l(p_1) = e^{max(0, \Phi^{-1}(1-p_1))^2/2}}
#' The maximum likelihood ratio is always restricted to effect sizes \eqn{\vartheta \geq 0} (corresponding to \eqn{p_1 \leq 0.5}).
#' }
#'
#' @section Effect for conditional power:
#' For the treatment effect at which the target conditional power should be achieved, either a fixed effect or an interim estimate can be used.
#' The usage of a fixed effect is indicated by setting \code{useInterimEstimate=FALSE}, in which case the fixed effect is provided by \code{delta1} on the mean difference scale or by \code{ncp1} on the non-centrality parameter scale (i.e., \code{delta1*sqrt(firstStageInformation)}).
#' For an interim estimate, specified by \code{useInterimEstimate=TRUE}, a lower cut-off for the interim estimate must be provided, either by \code{delta1Min} on the mean difference scale, or \code{ncp1Min} on the non-centrality parameter scale.
#' In addition, an upper limit of the estimate may be analogously provided by \code{delta1Max} or \code{ncp1Max}.
#'
#' @section Sample size and information:
#' The first-stage information of the trial design must be specified to allow for calculations between the mean difference and non-centrality parameter scale.
#' It is provided to the design object via \code{firstStageInformation}. \cr
#' Listed below are some examples for the calculation between information (\eqn{I_1}) and sample size:
#' \itemize{
#' \item One-sample z-test with \eqn{n} total patients: \eqn{I_1 = \frac{n}{\sigma^2}}, where \eqn{\sigma^2} is the variance of an individual observation
#'
#' \item Balanced two-sample z-test with \eqn{n_1} patients per group: \eqn{I_1 = \frac{1}{2}\cdot\frac{n_1}{\sigma^2}}, where \eqn{\sigma^2} is the common variance
#'
#' \item General two-sample z-test with \eqn{n_1}, \eqn{n_2} patients per group: \eqn{I_1 = 1/(\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2})}, where \eqn{\sigma_1^2}, \eqn{\sigma_2^2} are the group-wise variances
#' }
#'
#' @section Monotonicity:
#' By default, the optimal conditional error function returned by \code{getDesignOptimalConditionalErrorFunction()} is transformed to be non-increasing in the first-stage p-value \eqn{p_1} if found to be increasing on any interval.
#' The necessary intervals and constants for the transformation are calculated by \code{getMonotonisationConstants()}.
#' Although not recommended for the operating characteristics of the design, the transformation may be omitted by setting \code{enforceMonotonicity=FALSE}.
#'
#' @section Constraints:
#' In some applications, it may be feasible to restrict the optimal conditional error function by a lower and/or upper limit.
#' These constraints can be directly implemented on the function by using the arguments \code{minimumConditionalError} and \code{maximumConditionalError}.
#' By default, \code{minimumConditionalError=0} and \code{maximumConditionalError=1}, i.e., no constraints are applied.
#' The constraints may also be specified on the second-stage information via \code{minimumSecondStageInformation} and \code{maximumSecondStageInformation}.
#' If both \code{minimumConditionalError} and \code{maximumSecondStageInformation} respectively \code{maximumConditionalError} and \code{minimumSecondStageInformation}
#' are provided, both constraints will be applied.
#'
#' @section Level constant:
#' The level constant is determined by the helper function \code{getLevelConstant()}. It is identified using the \code{uniroot()} function and by default, the interval between 0 and 10 is searched for the level constant.
#' In specific settings, the level constant may lie outside of this interval. In such cases, the search interval can be changed by altering the parameters \code{levelConstantMinimum} and \code{levelConstantMaximum}. \cr
#' If inappropriate constraints to the optimal conditional error function are provided via \code{minimumConditionalError} and \code{maximumConditionalError}
#' or \code{minimumSecondStageInformation} and \code{maximumSecondStageInformation}, it may be impossible to find a level constant which exhausts the full alpha level.
#'
#' @section Generic functions:
#' The \code{print()} and \code{plot()} functions are available for objects of class \code{TrialDesignOptimalConditionalError}.
#' For details, see \code{?print.TrialDesignOptimalConditionalError} and \code{?plot.TrialDesignOptimalConditionalError}.
#'
#' @template param_alpha
#' @template param_alpha1
#' @template param_alpha0
#' @template param_conditionalPower
#' @template param_conditionalPowerFunction
#' @template param_ncp1
#' @template param_ncp1Min
#' @template param_ncp1Max
#' @template param_delta1
#' @template param_delta1Min
#' @template param_delta1Max
#' @template param_likelihoodRatioDistribution
#' @template param_firstStageInformation
#' @template param_useInterimEstimate
#' @template param_minimumSecondStageInformation
#' @template param_maximumSecondStageInformation
#' @template param_minimumConditionalError
#' @template param_maximumConditionalError
#' @template param_levelConstantMinimum
#' @template param_levelConstantMaximum
#' @template param_enforceMonotonicity
#' @param ... Additional arguments required for the specification of the likelihood ratio.
#'
#' @importFrom methods new
#'
#' @return An object of class \code{TrialDesignOptimalConditionalError}, which can be passed to other package functions.
#'
#'
#' @examples
#' \donttest{
#' # Create a single-arm design with fixed parameter for the likelihood ratio
#' # and a fixed effect for conditional power. 80 patients are observed in the
#' # first-stage (firstStageInformation = 80 in the one-sample test, variance 1).
#' # The second-stage information is restricted to be between 40 and 160.
#' getDesignOptimalConditionalErrorFunction(
#' alpha = 0.025, alpha1 = 0.001, alpha0 = 0.5, conditionalPower = 0.9,
#' delta1 = 0.25, likelihoodRatioDistribution = "fixed", deltaLR = 0.25,
#' firstStageInformation = 80, useInterimEstimate = FALSE,
#' minimumSecondStageInformation = 40, maximumSecondStageInformation = 160
#' )
#'
#' # Create a design comparing two groups using the maximum likelihood ratio
#' # and an interim estimate for the effect for conditional power.
#' # 160 patients per arm are observed in the first stage
#' # (firstStageInformation = 80 in the balanced two-sample test, variance 1).
#' getDesignOptimalConditionalErrorFunction(
#' alpha = 0.025, alpha1 = 0.001, alpha0 = 0.5, conditionalPower = 0.9,
#' delta1Min = 0.25, likelihoodRatioDistribution = "maxlr",
#' firstStageInformation = 80, useInterimEstimate = TRUE
#' )
#' }
#'
#' @export
#'
#' @template reference_optimal
#' @template reference_monotone
#'
getDesignOptimalConditionalErrorFunction <- function(
alpha,
alpha1,
alpha0,
conditionalPower = NA_real_,
delta1 = NA_real_,
delta1Min = NA_real_,
delta1Max = Inf,
ncp1 = NA_real_,
ncp1Min = NA_real_,
ncp1Max = Inf,
useInterimEstimate = TRUE,
firstStageInformation,
likelihoodRatioDistribution,
minimumSecondStageInformation = 0,
maximumSecondStageInformation = Inf,
minimumConditionalError = 0,
maximumConditionalError = 1,
conditionalPowerFunction = NA,
levelConstantMinimum = 0,
levelConstantMaximum = 10,
enforceMonotonicity = TRUE,
...
) {
design <- new(
"TrialDesignOptimalConditionalError",
alpha = alpha,
alpha1 = alpha1,
alpha0 = alpha0,
conditionalPower = conditionalPower,
delta1 = delta1,
delta1Min = delta1Min,
delta1Max = delta1Max,
ncp1 = ncp1,
ncp1Min = ncp1Min,
ncp1Max = ncp1Max,
firstStageInformation = firstStageInformation,
useInterimEstimate = useInterimEstimate,
likelihoodRatioDistribution = likelihoodRatioDistribution,
minimumSecondStageInformation = minimumSecondStageInformation,
maximumSecondStageInformation = maximumSecondStageInformation,
minimumConditionalError = minimumConditionalError,
maximumConditionalError = maximumConditionalError,
conditionalPowerFunction = conditionalPowerFunction,
levelConstantMinimum = levelConstantMinimum,
levelConstantMaximum = levelConstantMaximum,
enforceMonotonicity = enforceMonotonicity,
... = ...
)
return(design)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.