R/getLevelConstant.R

Defines functions getLevelConstant

Documented in getLevelConstant

#' Get Level Constant for Optimal Conditional Error Function
#' @name getLevelConstant
#'
#' @description Find the constant required such that the conditional error function meets the overall level condition.
#'
#' @details The level condition is defined as:
#' \deqn{\alpha = \alpha_1 + \int_{\alpha_1}^{\alpha_0} \alpha_2(p_1)dp_1.}
#' The constant \eqn{c_0} of the optimal conditional error function is calibrated such that it meets the level condition.
#' For a valid design, the additional following condition must be met to be able to exhaust the level \eqn{\alpha}:
#' \deqn{\alpha_1 + CP(\alpha_0-\alpha_1)>\alpha.}
#' This condition is checked by \code{getLevelConstant()} and the execution is terminated if it is not met. \cr
#' In case a conditional power function is used, the condition is instead:
#' \deqn{\alpha_1 + \int_{\alpha_1}^{\alpha_0} CP(p_1)dp_1>\alpha.}
#'
#' @template param_design
#'
#' @return A list that contains the constant (element \code{$root}) and other components provided by \code{uniroot()}.
#' The level constant is calculated corresponding to the mean difference scale.
#'
#' @template reference_optimal
#' @template reference_monotone

getLevelConstant <- function(design) {
  # Check basic condition for decision rules
  # Fixed conditional power
  if (!is.na(design$conditionalPower)) {
    if (
      design$alpha1 +
        design$conditionalPower * (design$alpha0 - design$alpha1) <=
        design$alpha
    ) {
      stop(
        "(alpha1 + conditionalPower*(alpha0-alpha1)) must exceed alpha, otherwise no level constant fully exhausting alpha can be found."
      )
    }
  } else if (
    !is.null(suppressWarnings(body(design$conditionalPowerFunction)))
  ) {
    # Conditional power function
    if (
      stats::integrate(
        f = design$conditionalPowerFunction,
        lower = design$alpha1,
        upper = design$alpha0
      )$value <=
        design$alpha - design$alpha1
    ) {
      stop(
        "Integral over conditional power function from alpha1 to alpha0 must exceed (alpha-alpha1), otherwise no level constant fully exhausting alpha can be found."
      )
    }
  } else {
    # Unexpected issue
    stop(
      "Unexpected error: both conditionalPower and conditionalPowerFunction are specified inappropriately."
    )
  }

  # Find the level constant.
  # Expects an error if specified non-centrality parameter is very large or very small
  tryCatch(
    expr = {
      stats::uniroot(
        f = getIntegral,
        lower = design$levelConstantMinimum,
        upper = design$levelConstantMaximum,
        design = design,
        tol = 1e-16
      )
    },
    error = function(e) {
      # This specific error may occur if the given non-centrality parameter is too small or too large or if the
      # provided constraints are not suitable and is handled separately
      if (e$message == "f() values at end points not of opposite sign") {
        stop(
          "Root finding for level constant failed. Try changing the search interval via arguments levelConstantMinimum and levelConstantMaximum. \n Alternatively, the constraints on the optimal conditional error function or second-stage information may not be appropriate."
        )
      } else {
        # Print all other errors directly
        stop(e)
      }
    }
  )
}

Try the optconerrf package in your browser

Any scripts or data that you put into this service are public.

optconerrf documentation built on Sept. 9, 2025, 5:29 p.m.