R/cochrane.orcutt.R

Defines functions cochrane.orcutt

Documented in cochrane.orcutt

cochrane.orcutt <-
function(reg, convergence = 8){ 
    #if (!require('lmtest')) {
    #  stop('The package lmtest was not installed')
    #}
    #require(lmtest)
    X <- model.matrix(reg) 
    Y <- model.response(model.frame(reg)) 
    n<-length(Y) 
    e<-reg$residuals   
    e2<-e[-1] 
    e3<-e[-n] 
    regP<-lm(e2~e3-1) 
    rho<-summary(regP)$coeff[1] 
    rho2<-c(rho) 
    XB<-X[-1,]-rho*X[-n,] 
    YB<-Y[-1]-rho*Y[-n] 
    regCO<-lm(YB~XB-1) 
    ypCO<-regCO$coeff[1]+as.matrix(X[,-1])%*%regCO$coeff[-1]   
    e1<-ypCO-Y 
    e2<-e1[-1] 
    e3<-e1[-n] 
    regP<-lm(e2~e3-1)  
    rho<-summary(regP)$coeff[1] 
    rho2[2]<-rho 
    i<-2 
    while (round(rho2[i-1],convergence)!=round(rho2[i],convergence)){ 
      XB<-X[-1,]-rho*X[-n,] 
      YB<-Y[-1]-rho*Y[-n] 
      regCO<-lm(YB~XB-1) 
      ypCO<-regCO$coeff[1]+as.matrix(X[,-1])%*%regCO$coeff[-1]   
      e1<-ypCO-Y 
      e2<-e1[-1] 
      e3<-e1[-n] 
      regP<-lm(e2~e3-1) 
      rho<-summary(regP)$coeff[1]   
      i<-i+1 
      rho2[i]<-rho 
    } 
    
    regCO$number.interaction<-i-1 
    regCO$rho <- rho2[i-1]
    
    regCO$DW <- c(lmtest::dwtest(reg)$statistic, lmtest::dwtest(reg)$p.value,
                  lmtest::dwtest(regCO)$statistic, lmtest::dwtest(regCO)$p.value)
    
    regF<-lm(YB ~ 1)
    tF <- anova(regCO,regF)
    
    regCO$Fs <- c(tF$F[2],tF$`Pr(>F)`[2])
    
    # fitted.value
    regCO$fitted.values <- model.matrix(reg) %*% (as.matrix(regCO$coeff))
    
    
    # coeff
    names(regCO$coefficients) <- colnames(X)
    
    # st.err
    regCO$std.error <- summary(regCO)$coeff[,2]
    
    # t value
    regCO$t.value <- summary(regCO)$coeff[,3]
    
    # p value
    regCO$p.value <- summary(regCO)$coeff[,4]       
    
    
    class(regCO) <- "orcutt"
    
    
    # formula
    regCO$call <- reg$call    
    
    # F statistics and p value
    df1 <-  dim(model.frame(reg))[2] - 1
    df2 <- length(regCO$residuals) - df1 - 1
    
    RSS <- sum((regCO$residuals)^2)  
    TSS <- sum((regCO$model[1] - mean(regCO$model[,1]))^2)
    
    regCO$rse <- sqrt(RSS/df2)
    regCO$r.squared <- 1 - (RSS/TSS)
    regCO$adj.r.squared <-  1 - ((RSS/df2)/(TSS/(df1 + df2)))
    
    regCO$gdl <- c(df1, df2)
    
    # 
    regCO$rank <- df1
    regCO$df.residual <- df2    
    regCO$assign <- regCO$assign[-(df1+1)]    
    
    regCO$residuals <- Y - regCO$fitted.values
    regCO
  }

Try the orcutt package in your browser

Any scripts or data that you put into this service are public.

orcutt documentation built on Nov. 17, 2017, 4:36 a.m.