Nothing
#' Object resulting from the fit of a proportional odds model using 'ordregr'
#'
#' An object returned by the \code{\link{ordregr}} function: this is a list
#' with various components related to the fit of such a model.
#'
#' @return A \code{ordregr} object is a list with following elements:
#' \itemize{
#' \item{\code{val} : \verb{ }}{Value of the log-posterior at convergence.}
#' \item{\code{val.start} : \verb{ }}{Value of the log-posterior at the start of the Newton-Raphson (N-R) algorithm.}
#' \item{\code{theta} : \verb{ }}{(Penalized) MLE or MAP of the regression coefficients.}
#' \item{\code{grad} : \verb{ }}{Gradient of the log-posterior at \code{theta}.}
#' \item{\code{Hessian} : \verb{ }}{Hessian of the log-posterior at \code{theta}.}
#' \item{\code{iter} : \verb{ }}{Number of iterations of the N-R algorithm.}
#' \item{\code{Hessian0} : \verb{ }}{Hessian of the (non-penalized) log-likelihood at \code{theta}.}
#' \item{\code{Sigma.theta} : \verb{ }}{Variance-covariance of 'theta'.}
#' \item{\code{ED.full} : \verb{ }}{Effective degrees of freedom associated to each regression parameter, penalized parameters included.}
#' \item{\code{se.theta} : \verb{ }}{Standard errors of the regression coefficents.}
#' \item{\code{theta.mat} : \verb{ }}{Matrix containing the point estimate, standard error, credible interval, Z-score and P-value for \code{theta}.}
#' \item{\code{nc} : \verb{ }}{Number of categories for the ordinal response.}
#' \item{\code{nalpha} : \verb{ }}{Number of intercepts in the proportional odds model (=\code{nc}-1) .}
#' \item{\code{nbeta} : \verb{ }}{Number of regression parameters (intercepts excluded).}
#' \item{\code{nfixed} : \verb{ }}{Number of non-penalized regression parameters.}
#' \item{\code{ci.level} : \verb{ }}{Nominal coverage of the credible intervals (Default: .95).}
#' \item{\code{n} : \verb{ }}{Sample size.}
#' \item{\code{call} : \verb{ }}{Function call.}
#' \item{\code{descending} : \verb{ }}{Logical indicating if the odds of the response taking a value in the upper scale should be preferred over values in the lower scale.}
#' \item{\code{use.prior} : \verb{ }}{Logical indicating if a prior (such as a penalty) is assumed for the regression parameters.}
#' \item{\code{lpost} : \verb{ }}{Value of the log-posterior at convergence.}
#' \item{\code{levidence} : \verb{ }}{Log of the marginal likelihood (also named 'evidence').}
#' }
#'
#' @author Philippe Lambert \email{p.lambert@uliege.be}
#' @references
#' Lambert, P. and Gressani, 0. (2023) Penalty parameter selection and asymmetry corrections
#' to Laplace approximations in Bayesian P-splines models. Statistical Modelling. <doi:10.1177/1471082X231181173>. Preprint: <arXiv:2210.01668>.
#'
#' @seealso \code{\link{ordregr}}, \code{\link{print.ordregr}}
#'
#' @name ordregr.object
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.