Description Usage Arguments Author(s) References
The R-function ‘ordinalRR.control’ sets various control parameters for the prior if using the random-effects version of the model and for the MCMC. See Section 3.2 of Culp, Ryan, Chen, and Hamada (2018) for more on this prior. Default settings match this paper.
1 2 3 | ordinalRR.control(mu.mu.alpha = 0.8, tau.mu.alpha = 0.4, mu.tau.alpha = 4,
tau.tau.alpha = 0.4, mu.lambda = 2, tau.lambda = 0.2, rjags.B = 10000L,
rjags.Burn = 1000L, rjags.n.chains = 1L, rjags.n.adapt = 5000L,r.seed=10L,rjags.seed=10L)
|
mu.mu.alpha |
‘positive scalar’ mean of the normal prior for mu.alpha. |
tau.mu.alpha |
‘positive scalar’ precision=1/variance of the normal prior for mu.alpha. |
mu.tau.alpha |
‘positive scalar’ mean of the log-normal prior for tau.alpha. |
tau.tau.alpha |
‘positive scalar’ precision of the log-normal prior for tau.alpha. |
mu.lambda |
‘positive scalar’ mean of the log-normal prior for the lambda.h. |
tau.lambda |
‘positive scalar’ precision of the log-normal prior for the lambda.h. |
rjags.B |
‘positive integer’ length of JAGS MCMC chain retained. |
rjags.Burn |
‘positive integer’ length of initial JAGS MCMC chain burnin discarded. |
rjags.n.chains |
‘1’ number of JAGS MCMC chains (currently only programmed to accept 1). |
rjags.n.adapt |
‘positive integer’ rjags n.adapt parameter within command jag.model(). |
r.seed |
‘positive integer’ sets seed within R during function ordinalRR(). This is for predictive inference on a new rater which is only used with the random-effects model. This does not fix the JAGS seed for the MCMC. |
rjags.seed |
‘positive integer’ sets seed within JAGS for the posterior sample from function ordinalRR(). |
Ken Ryan
Culp, S.L., Ryan, K.J., Chen, J., and Hamada, M.S. (2018). “Analysis of Repeatability and Reproducibility Studies with Ordinal Measurements.” Technometrics, doi:10.1080/00401706.2018.1429317.
Plummer, M. (2016). “RJAGS: Bayesian Graphical Models using MCMC.” R Package Version 4-6, https://CRAN.R-project.org/package=rjags.
Plummer, M. (2017). “JAGS: A Program for Analysis of Bayesian Graphical Models using Gibbs Sampling.” Version 4.3.0, http://mcmc-jags.sourceforge.net.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.