generator.otrimle: Generates random data from OTRIMLE output model

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/otrimle_nc.R

Description

This uses data and the output of otrimle or rimle to generate a new artificial dataset of the size of the original data using noise and cluster proportions from the clustering output. The clusters are then generated from multivariate normal distributions with the parameters estimated by otrimle, the noise is generated resampling from what is estimated as moise component with weights given by posterior probabilities of all observations to be noise. See Hennig and Coretto (2021).

Usage

1

Arguments

data

something that can be coerced into a matrix. Dataset.

fit

output object of otrimle or rimle.

Value

A list with components data, clustering.

data

matrix of generated data.

cs

vector of integers. Clustering indicator.

Author(s)

Christian Hennig christian.hennig@unibo.it https://www.unibo.it/sitoweb/christian.hennig/en/

References

Hennig, C. and P.Coretto (2021). An adequacy approach for deciding the number of clusters for OTRIMLE robust Gaussian mixture based clustering. To appear in Australian and New Zealand Journal of Statistics, https://arxiv.org/abs/2009.00921.

See Also

kerndensp, kerndensmeasure, otrimle, rimle

Examples

1
2
3
4
5
6
   data(banknote)
   selectdata <- c(1:30,101:110,117:136,160:161)
   set.seed(555566)
   x <- banknote[selectdata,5:7]
   ox <- otrimle(x, G=2 , ncores = 1)
   str(generator.otrimle(x, ox))

otrimle documentation built on May 29, 2021, 9:09 a.m.