View source: R/pamr.survfuns.R
pamr.plotsurvival | R Documentation |
A function to plots Kaplan-Meier curves stratified by a group variable
pamr.plotsurvival(group, survival.time, censoring.status)
group |
A grouping factor |
survival.time |
Vector of survival times |
censoring.status |
Vector of censoring status values: 1=died, 0=censored |
Trevor Hastie,Robert Tibshirani, Balasubramanian Narasimhan, and Gilbert Chu
gendata<-function(n=100, p=2000){
tim <- 3*abs(rnorm(n))
u<-runif(n,min(tim),max(tim))
y<-pmin(tim,u)
ic<-1*(tim<u)
m <- median(tim)
x<-matrix(rnorm(p*n),ncol=n)
x[1:100, tim>m] <- x[1:100, tim>m]+3
return(list(x=x,y=y,ic=ic))
}
# generate training data; 2000 genes, 100 samples
junk<-gendata(n=100)
y<-junk$y
ic<-junk$ic
x<-junk$x
d <- list(x=x,survival.time=y, censoring.status=ic,
geneid=as.character(1:nrow(x)), genenames=paste("g",as.character(1:nrow(x)),sep=
""))
# train model
a3<- pamr.train(d, ngroup.survival=2)
#make class predictions
yhat <- pamr.predict(a3,d$x, threshold=1.0)
pamr.plotsurvival(yhat, d$survival.time, d$censoring.status)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.