Nothing
context("apa_print.lm()")
test_that(
"Linear regression: lm()-fit"
, {
ctl <- c(4.17, 5.58, 5.18, 6.11, 4.50, 4.61, 5.17, 4.53, 5.33, 5.14)
trt <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)
group <- gl(2, 10, 20, labels = c("Ctl", "Trt"))
weight <- c(ctl, trt)
lm_fit <- lm(weight ~ group)
lm_fit_output <- apa_print(lm_fit)
expect_apa_results(
lm_fit_output
, labels = list(
term = "Predictor"
, estimate = "$b$"
, conf.int = "95\\% CI"
, statistic = "$t$"
, df = "$\\mathit{df}$"
, p.value = "$p$"
)
)
# stat
expect_identical(length(lm_fit_output$stat), 3L)
expect_identical(names(lm_fit_output$stat), c("Intercept", "groupTrt", "modelfit"))
expect_identical(length(lm_fit_output$stat$modelfit), 1L)
expect_identical(names(lm_fit_output$stat$modelfit), "r2")
expect_identical(lm_fit_output$stat$Intercept, "$t(18) = 22.85$, $p < .001$")
expect_identical(lm_fit_output$stat$groupTrt, "$t(18) = -1.19$, $p = .249$")
expect_identical(lm_fit_output$stat$modelfit$r2, "$F(1, 18) = 1.42$, $p = .249$")
# est
expect_identical(names(lm_fit_output$est), c("Intercept", "groupTrt", "modelfit"))
expect_identical(length(lm_fit_output$est$modelfit), 4L)
expect_identical(names(lm_fit_output$est$modelfit), c("r2", "r2_adj", "aic", "bic"))
expect_identical(lm_fit_output$est$Intercept, "$b = 5.03$, 95\\% CI $[4.57, 5.49]$")
expect_identical(lm_fit_output$est$groupTrt, "$b = -0.37$, 95\\% CI $[-1.03, 0.28]$")
expect_identical(lm_fit_output$est$modelfit$r2, "$R^2 = .07$, 90\\% CI $[0.00, 0.33]$")
expect_identical(lm_fit_output$est$modelfit$r2_adj, "$R^2_{adj} = .02$")
expect_identical(lm_fit_output$est$modelfit$aic, "$\\mathrm{AIC} = 46.18$")
expect_identical(lm_fit_output$est$modelfit$bic, "$\\mathrm{BIC} = 49.16$")
# full
expect_identical(names(lm_fit_output$full), c("Intercept", "groupTrt", "modelfit"))
expect_identical(length(lm_fit_output$full$modelfit), 1L)
expect_identical(names(lm_fit_output$full$modelfit), "r2")
expect_identical(lm_fit_output$full$Intercept, "$b = 5.03$, 95\\% CI $[4.57, 5.49]$, $t(18) = 22.85$, $p < .001$")
expect_identical(lm_fit_output$full$groupTrt, "$b = -0.37$, 95\\% CI $[-1.03, 0.28]$, $t(18) = -1.19$, $p = .249$")
expect_identical(lm_fit_output$full$modelfit$r2, "$R^2 = .07$, 90\\% CI $[0.00, 0.33]$, $F(1, 18) = 1.42$, $p = .249$")
# table
expect_identical(nrow(lm_fit_output$table), 2L)
# Manual CI
lm_fit_output <- apa_print(lm_fit, conf.int = matrix(c(1, 2), ncol = 2, nrow = 2, byrow = TRUE, dimnames = list(names(lm_fit$coefficients), c("2.5 \\%", "97.5 \\%"))))
expect_identical(lm_fit_output$full$Intercept, "$b = 5.03$, 95\\% CI $[1.00, 2.00]$, $t(18) = 22.85$, $p < .001$")
expect_identical(lm_fit_output$full$groupTrt, "$b = -0.37$, 95\\% CI $[1.00, 2.00]$, $t(18) = -1.19$, $p = .249$")
expect_identical(lm_fit_output$full$modelfit$r2, "$R^2 = .07$, 90\\% CI $[0.00, 0.33]$, $F(1, 18) = 1.42$, $p = .249$")
expect_apa_results(
lm_fit_output
, labels = list(
term = "Predictor"
, estimate = "$b$"
, conf.int = "95\\% CI"
, statistic = "$t$"
, df = "$\\mathit{df}$"
, p.value = "$p$"
)
)
# Set name of estimate
lm_fit_output <- apa_print(lm_fit, est_name = "\\beta")
expect_identical(lm_fit_output$est$Intercept, "$\\beta = 5.03$, 95\\% CI $[4.57, 5.49]$")
expect_identical(lm_fit_output$est$groupTrt, "$\\beta = -0.37$, 95\\% CI $[-1.03, 0.28]$")
expect_apa_results(
lm_fit_output
, labels = list(
term = "Predictor"
, estimate = "$\\beta$"
, conf.int = "95\\% CI"
, statistic = "$t$"
, df = "$\\mathit{df}$"
, p.value = "$p$"
)
)
# Standardized regression coefficients
trt <- rep(trt, 2)
ctl <- rep(ctl, 2)
lm_fit <- lm(scale(trt) ~ scale(ctl))
lm_fit_output <- apa_print(lm_fit, standardized = TRUE)
expect_identical(lm_fit_output$full$Intercept, "$b^* = .00$, 95\\% CI $[-.43, .43]$, $t(18) = 0.00$, $p > .999$")
expect_identical(lm_fit_output$full$z_ctl, "$b^* = -.46$, 95\\% CI $[-.90, -.02]$, $t(18) = -2.18$, $p = .042$")
expect_apa_results(
lm_fit_output
, labels = list(
term = "Predictor"
, estimate = "$b^*$"
, conf.int = "95\\% CI"
, statistic = "$t$"
, df = "$\\mathit{df}$"
, p.value = "$p$"
)
, term_names = c("Intercept", "z_ctl", "modelfit")
, table_terms = c("Intercept", "Ctl")
)
# No CI information
expect_error(apa_print(lm_fit, conf.int = NULL), "The parameter 'conf.int' is NULL.")
# deprecated argument 'ci'
expect_warning(
apa_print(lm_fit, ci = .95)
, "Using argument 'ci' in calls to 'apa_print()' is deprecated. Please use 'conf.int' instead."
, fixed = TRUE
)
}
)
context("apa_print.summary.lm()")
test_that(
"Linear regression: summary(lm())"
, {
ctl <- c(4.17, 5.58, 5.18, 6.11, 4.50, 4.61, 5.17, 4.53, 5.33, 5.14)
trt <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)
group <- gl(2, 10, 20, labels = c("Ctl", "Trt"))
weight <- c(ctl, trt)
lm_fit <- lm(weight ~ group)
lm_fit_output <- apa_print(lm_fit)
lm_summary <- summary(lm_fit)
lm_summary_output <- apa_print(lm_summary)
expect_identical(lm_summary_output, lm_fit_output)
lm_fit_output <- apa_print(lm_fit, digits = 0)
expect_identical(lm_fit_output$est$Intercept, "$b = 5$, 95\\% CI $[5, 5]$")
}
)
context("apa_print.glm()")
test_that(
"Linear regression: glm()-fit"
, {
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
glm_fit <- glm(counts ~ outcome, family = poisson())
glm_fit_output <- apa_print(glm_fit)
expect_apa_results(
glm_fit_output
, labels = list(
term = "Predictor"
, estimate = "$b$"
, conf.int = "95\\% CI"
, statistic = "$z$"
, p.value = "$p$"
)
)
# stat
expect_identical(length(glm_fit_output$stat), 3L)
expect_identical(names(glm_fit_output$stat), c("Intercept", "outcome2", "outcome3"))
expect_identical(glm_fit_output$stat$Intercept, "$z = 24.17$, $p < .001$")
expect_identical(glm_fit_output$stat$outcome2, "$z = -2.25$, $p = .025$")
expect_identical(glm_fit_output$stat$outcome3, "$z = -1.52$, $p = .128$")
# est
expect_identical(names(glm_fit_output$est), c("Intercept", "outcome2", "outcome3", "modelfit"))
expect_identical(length(glm_fit_output$est$modelfit), 2L)
expect_identical(names(glm_fit_output$est$modelfit), c("aic", "bic"))
expect_identical(glm_fit_output$est$Intercept, "$b = 3.04$, 95\\% CI $[2.79, 3.28]$")
expect_identical(glm_fit_output$est$outcome2, "$b = -0.45$, 95\\% CI $[-0.86, -0.06]$")
expect_identical(glm_fit_output$est$outcome3, "$b = -0.29$, 95\\% CI $[-0.68, 0.08]$")
expect_identical(glm_fit_output$est$modelfit$aic, "$\\mathrm{AIC} = 52.76$")
expect_identical(glm_fit_output$est$modelfit$bic, "$\\mathrm{BIC} = 53.35$")
# full
expect_identical(names(glm_fit_output$full), c("Intercept", "outcome2", "outcome3"))
expect_identical(glm_fit_output$full$Intercept, "$b = 3.04$, 95\\% CI $[2.79, 3.28]$, $z = 24.17$, $p < .001$")
expect_identical(glm_fit_output$full$outcome2, "$b = -0.45$, 95\\% CI $[-0.86, -0.06]$, $z = -2.25$, $p = .025$")
expect_identical(glm_fit_output$full$outcome3, "$b = -0.29$, 95\\% CI $[-0.68, 0.08]$, $z = -1.52$, $p = .128$")
# table
expect_identical(nrow(glm_fit_output$table), 3L)
# Manual CI
glm_fit_output <- apa_print(glm_fit, conf.int = matrix(c(1, 2), ncol = 2, nrow = 3, byrow = TRUE, dimnames = list(names(glm_fit$coefficients), c("2.5 \\%", "97.5 \\%"))))
expect_apa_results(
glm_fit_output
, labels = list(
term = "Predictor"
, estimate = "$b$"
, conf.int = "95\\% CI"
, statistic = "$z$"
, p.value = "$p$"
)
)
expect_identical(glm_fit_output$full$Intercept, "$b = 3.04$, 95\\% CI $[1.00, 2.00]$, $z = 24.17$, $p < .001$")
expect_identical(glm_fit_output$full$outcome2, "$b = -0.45$, 95\\% CI $[1.00, 2.00]$, $z = -2.25$, $p = .025$")
expect_identical(glm_fit_output$full$outcome3, "$b = -0.29$, 95\\% CI $[1.00, 2.00]$, $z = -1.52$, $p = .128$")
# Set name of estimate
glm_fit_output <- apa_print(glm_fit, est_name = "\\beta")
expect_apa_results(
glm_fit_output
, labels = list(
term = "Predictor"
, estimate = "$\\beta$"
, conf.int = "95\\% CI"
, statistic = "$z$"
, p.value = "$p$"
)
)
expect_identical(glm_fit_output$est$Intercept, "$\\beta = 3.04$, 95\\% CI $[2.79, 3.28]$")
expect_identical(glm_fit_output$est$outcome2, "$\\beta = -0.45$, 95\\% CI $[-0.86, -0.06]$")
expect_identical(glm_fit_output$est$outcome3, "$\\beta = -0.29$, 95\\% CI $[-0.68, 0.08]$")
}
)
context("apa_print.summary.glm()")
test_that(
"Linear regression: summary(glm())"
, {
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
glm_fit <- glm(counts ~ outcome + treatment, family = poisson())
glm_fit_output <- apa_print(glm_fit)
glm_summary <- summary(glm_fit)
glm_summary_output <- apa_print(glm_summary)
expect_identical(glm_summary_output, glm_fit_output)
glm_fit_output <- apa_print(glm_fit, digits = 0)
expect_identical(glm_fit_output$est$Intercept, "$b = 3$, 95\\% CI $[3, 3]$")
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.