Nothing
#' Extract local climate for one or more locations for a given time slice.
#'
#' This function extract local climate for a set of locations at the appropriate
#' times (selecting the closest time slice available for the specific date
#' associated with each location).
#'
#' @param x a data.frame with columns x and y coordinates(see `coords` for
#' standard coordinate names, or how to use custom ones), plus optional
#' columns `time_bp` or `time_ce` (depending on the units used) and `name`.
#' Alternatively, a vector of cell numbers.
#' @param time_bp used if no `time_bp` column is present in `x`: the dates in
#' years before present (negative values represent time before present, i.e.
#' 1950, positive values time in the future) for each location.
#' @param time_ce time in years CE as an alternative to `time_bp`. Only one of
#' `time_bp` or `time_ce` should be used.
#' @param coords a vector of length two giving the names of the "x" and "y"
#' coordinates, as found in `data`. If left to NULL, the function will try to
#' guess the columns based on standard names `c("x", "y")`, `c("X","Y")`,
#' `c("longitude", "latitude")`, or `c("lon", "lat")`
#' @param region_series a [`terra::SpatRasterDataset`] obtained with
#' [region_series()]
#' @param nn_interpol boolean determining whether nearest neighbour
#' interpolation is used to estimate climate for cells that lack such
#' information (i.e. they are under water or ice). By default, interpolation
#' is only performed from the first ring of nearest neighbours; if climate is
#' not available, NA will be returned for that location. The number of
#' neighbours can be changed with the argument `directions`. `nn_interpol`
#' defaults to TRUE.
#' @param buffer boolean determining whether the variable will be returned as
#' the mean of a buffer around the focal cell. If set to TRUE, it overrides
#' `nn_interpol` (which provides the same estimates as `buffer` but only for
#' locations that are in cells with an NA). The buffer size is determined by
#' the argument `directions`. `buffer` defaults to FALSE.
#' @param directions character or matrix to indicate the directions in which
#' cells are considered connected when using `nn_interpol` or `buffer`. The
#' following character values are allowed: "rook" or "4" for the horizontal
#' and vertical neighbours; "bishop" to get the diagonal neighbours; "queen"
#' or "8" to get the vertical, horizontal and diagonal neighbours; or "16" for
#' knight and one-cell queen move neighbours. If directions is a matrix it
#' should have odd dimensions and have logical (or 0, 1) values.
#' @returns a data.frame with the climatic variables of interest.
#' @export
location_slice_from_region_series <- # nolint
function(x,
time_bp = NULL,
time_ce = NULL,
coords = NULL,
region_series,
nn_interpol = TRUE,
buffer = FALSE,
directions = 8) {
# get the region series for this dataset
climate_brick <- region_series
bio_variables <- names(region_series)
time_bp <- check_time_vars(time_bp = time_bp, time_ce = time_ce)
# boolean whether we will need to readd time_ce instead of time_bp
readd_ce <- FALSE
if (any(!is.null(time_ce), "time_ce" %in% names(x))) {
readd_ce <- TRUE
}
# if we have a data.frame
if (inherits(x, "data.frame")) {
coords <- check_coords_names(x, coords)
# check how time has been provided
# first make sure that, if there is a column, only one is provided
if (all(c("time_bp", "time_ce") %in% names(x))) {
stop(
"in x, there should only be either a 'time_bp' column, or ",
"a 'time_ce' column"
)
}
# check whether we have time both in the df and in the vector
if (all(
any(c("time_bp", "time_ce") %in% names(x)),
any(!is.null(time_bp), !is.null(time_ce))
)) {
stop(
"times should either be given as a column of x, or as values ",
"for time_bp or time_ce,",
"not both at the same time!"
)
}
# check if it is missing everywhere
if (all(
all(!c("time_bp", "time_ce") %in% names(x)),
all(is.null(time_bp), is.null(time_ce))
)) {
stop(
"missing times: they should either be given as a column of x, ",
"or as values for time_bp or time_ce"
)
}
locations_data <- x
} else if (inherits(x, "numeric")) {
locations_data <- data.frame(cell_number = x)
}
# add time_bp if needed
if (!is.null(time_bp)) {
locations_data$time_bp <- time_bp
}
if ("time_ce" %in% names(locations_data)) {
locations_data$time_bp <- locations_data$time_ce - 1950
}
# reorder input by time
orig_id <- order(locations_data$time_bp)
locations_data <- locations_data[order(locations_data$time_bp), ]
time_indeces <- NULL
# store coordinates in their own data.frame to be used for terra operations
if (inherits(x, "data.frame")) {
coords_df <- locations_data[, coords]
} else {
coords_df <- locations_data[, c("cell_number")]
}
# now sort out the time slices corresponding to each location
times <- time_bp(climate_brick)
time_indeces <- time_bp_to_index(
time_bp = locations_data$time_bp, time_steps = times
)
locations_data$time_bp_slice <- times[time_indeces]
unique_times <- unique(locations_data$time_bp_slice)
for (i_time in unique_times) {
this_slice <- slice_region_series(climate_brick,
time_bp = i_time
)
this_slice_indeces <- which(locations_data$time_bp_slice == i_time)
if (!buffer) { # get the specific values for those locations
this_climate <- terra::extract(
x = this_slice,
y = locations_data[locations_data$time_bp_slice == i_time, coords]
)
# factors don't behave nicely when adding new elements, cast to
# character
if ("biome" %in% names(this_climate)) {
this_climate$biome <- as.character(this_climate$biome)
}
# sort out the indexing here
locations_data[locations_data$time_bp_slice == i_time, bio_variables] <-
this_climate[
,
bio_variables
]
} else { # set to NA as we will compute them with a buffer
locations_data[this_slice_indeces, ] <- NA
}
if (nn_interpol || buffer) {
locations_to_move <- this_slice_indeces[
this_slice_indeces %in%
which(!stats::complete.cases(locations_data))
]
if (length(locations_to_move) == 0) {
next
}
for (i in locations_to_move) {
if (inherits(x, "data.frame")) {
cell_id <-
terra::cellFromXY(this_slice, as.matrix(coords_df[
i,
]))
} else {
cell_id <- coords_df[i]
}
neighbours_ids <-
terra::adjacent(this_slice, cell_id,
directions = directions, pairs = FALSE
)
neighbours_values <-
terra::extract(
x = this_slice,
y = neighbours_ids[1, ]
) # [, bio_variables]
neighbours_values_mean <- colMeans(
neighbours_values[, !names(neighbours_values) %in% "biome",
drop = FALSE
],
na.rm = TRUE
)
if ("biome" %in% bio_variables) {
neighbours_values_mean["biome"] <-
mode(as.character(neighbours_values[, "biome"]))
}
locations_data[i, bio_variables] <-
neighbours_values_mean[bio_variables]
}
}
}
# is.nan has not method for a data.frame
# nolint start
is.nan.data.frame <- function(x) {
do.call(cbind, lapply(x, is.nan))
}
# nolint end
locations_data[is.nan(locations_data)] <- NA
locations_data <- locations_data[order(orig_id), ]
if (readd_ce) {
locations_data$time_ce <- locations_data$time_bp + 1950
locations_data$time_ce_slice <- locations_data$time_bp_slice + 1950
locations_data <- locations_data[
,
!names(locations_data) %in%
c("time_bp", "time_bp_slice")
]
}
# reintroduce the factor
if ("biome" %in% bio_variables) {
locations_data$biome <- factor(locations_data$biome,
levels = levels(region_series$biome)[[1]]$category
)
}
return(locations_data)
}
#' Mode
#'
#' Find the mode of vector x (note that, if multiple values have the same
#' frequency, this function simply picks the first occurring one)
#'
#' @param x a vector
#' @returns the mode
#'
#' @keywords internal
mode <- function(x) {
x <- x[!is.na(x)]
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.