inst/examples/paths-example.R

data(tatar)

m1 <- c("trust_g1", "victim_g1", "fear_g1")
m2 <- c("trust_g2", "victim_g2", "fear_g2")
m3 <- c("trust_g3", "victim_g3", "fear_g3")
mediators <- list(m1, m2, m3)

formula_m0 <- annex ~ kulak + prosoviet_pre + religiosity_pre + land_pre +
  orchard_pre + animals_pre + carriage_pre + otherprop_pre + violence
formula_m1 <- update(formula_m0,    ~ . + trust_g1 + victim_g1 + fear_g1)
formula_m2 <- update(formula_m1,    ~ . + trust_g2 + victim_g2 + fear_g2)
formula_m3 <- update(formula_m2,    ~ . + trust_g3 + victim_g3 + fear_g3)
formula_ps <- violence ~ kulak + prosoviet_pre + religiosity_pre +
  land_pre + orchard_pre + animals_pre + carriage_pre + otherprop_pre

####################################################
# Causal Paths Analysis using GLM
####################################################

# outcome models
glm_m0 <- glm(formula_m0, family = binomial("logit"), data = tatar)
glm_m1 <- glm(formula_m1, family = binomial("logit"), data = tatar)
glm_m2 <- glm(formula_m2, family = binomial("logit"), data = tatar)
glm_m3 <- glm(formula_m3, family = binomial("logit"), data = tatar)
glm_ymodels <- list(glm_m0, glm_m1, glm_m2, glm_m3)

# propensity score model
glm_ps <- glm(formula_ps, family = binomial("logit"), data = tatar)

# causal paths analysis using glm
# note: For illustration purposes only a small number of bootstrap replicates are used
paths_glm <- paths(a = "violence", y = "annex", m = mediators,
  glm_ymodels, ps_model = glm_ps, data = tatar, nboot = 3)


####################################################
# Causal Paths Analysis using GBM
####################################################

require(gbm)

# outcome models
gbm_m0 <- gbm(formula_m0, data = tatar, distribution = "bernoulli", interaction.depth = 3)
gbm_m1 <- gbm(formula_m1, data = tatar, distribution = "bernoulli", interaction.depth = 3)
gbm_m2 <- gbm(formula_m2, data = tatar, distribution = "bernoulli", interaction.depth = 3)
gbm_m3 <- gbm(formula_m3, data = tatar, distribution = "bernoulli", interaction.depth = 3)
gbm_ymodels <- list(gbm_m0, gbm_m1, gbm_m2, gbm_m3)

# propensity score model via gbm
gbm_ps <- gbm(formula_ps, data = tatar, distribution = "bernoulli", interaction.depth = 3)

# causal paths analysis using gbm
# note: For illustration purposes only a small number of bootstrap replicates are used
paths_gbm <- paths(a = "violence", y = "annex", m = mediators,
  gbm_ymodels, ps_model = gbm_ps, data = tatar, nboot = 3)

Try the paths package in your browser

Any scripts or data that you put into this service are public.

paths documentation built on June 18, 2021, 9:07 a.m.