Nothing
#' Sugar beets data
#'
#' Yield and sugar percentage in sugar beets from a split plot
#' experiment. The experimental layout was as follows: There were
#' three blocks. In each block, the harvest time defines the
#' "whole plot" and the sowing time defines the "split plot". Each
#' plot was \eqn{25 m^2} and the yield is recorded in kg. See
#' 'details' for the experimental layout. The data originates from
#' a study carried out at The Danish Institute for Agricultural
#' Sciences (the institute does not exist any longer; it became
#' integrated in a Danish university).
#'
#' @name data-beets
#' @docType data
#' @format A dataframe with 5 columns and 30 rows.
#' @concept data
#'
#' @details
#' \preformatted{
#' Experimental plan
#' Sowing times 1 4. april
#' 2 12. april
#' 3 21. april
#' 4 29. april
#' 5 18. may
#' Harvest times 1 2. october
#' 2 21. october
#' Plot allocation:
#' Block 1 Block 2 Block 3
#' +-----------|-----------|-----------+
#' Plot | 1 1 1 1 1 | 2 2 2 2 2 | 1 1 1 1 1 | Harvest time
#' 1-15 | 3 4 5 2 1 | 3 2 4 5 1 | 5 2 3 4 1 | Sowing time
#' |-----------|-----------|-----------|
#' Plot | 2 2 2 2 2 | 1 1 1 1 1 | 2 2 2 2 2 | Harvest time
#' 16-30 | 2 1 5 4 3 | 4 1 3 2 5 | 1 4 3 2 5 | Sowing time
#' +-----------|-----------|-----------+
#' }
#'
#' @references Ulrich Halekoh, Søren Højsgaard (2014)., A Kenward-Roger
#' Approximation and Parametric Bootstrap Methods for Tests in Linear Mixed
#' Models - The R Package pbkrtest., Journal of Statistical Software,
#' 58(10), 1-30., \url{https://www.jstatsoft.org/v59/i09/}
#'
#' @keywords datasets
#'
#' @examples
#' data(beets)
#'
#' beets$bh <- with(beets, interaction(block, harvest))
#' summary(aov(yield ~ block + sow + harvest + Error(bh), beets))
#' summary(aov(sugpct ~ block + sow + harvest + Error(bh), beets))
#'
"beets"
#' @title Budworm data
#'
#' @description Experiment on the toxicity to the tobacco budworm
#' Heliothis virescens of doses of the pyrethroid
#' trans-cypermethrin to which the moths were beginning to show
#' resistance. Batches of 20 moths of each sex were exposed for
#' three days to the pyrethroid and the number in each batch that
#' were dead or knocked down was recorded. Data is reported in
#' Collett (1991, p. 75).
#'
#' @concept data
#' @name data-budworm
#' @docType data
#'
#' @format This data frame contains 12 rows and 4 columns:
#'
#' \describe{
#' \item{sex:}{sex of the budworm.}
#' \item{dose:}{dose of the insecticide trans-cypermethrin (in micro grams)}.
#' \item{ndead:}{budworms killed in a trial.}
#' \item{ntotal:}{total number of budworms exposed per trial.}
#' }
#'
#' @references Venables, W.N; Ripley, B.D.(1999) Modern Applied Statistics with
#' S-Plus, Heidelberg, Springer, 3rd edition, chapter 7.2
#'
#' @source Collett, D. (1991) Modelling Binary Data, Chapman & Hall, London,
#' Example 3.7
#'
#'
#' @keywords datasets
#' @examples
#'
#' data(budworm)
#'
#' ## function to caclulate the empirical logits
#' empirical.logit<- function(nevent,ntotal) {
#' y <- log((nevent + 0.5) / (ntotal - nevent + 0.5))
#' y
#' }
#'
#'
#' # plot the empirical logits against log-dose
#'
#' log.dose <- log(budworm$dose)
#' emp.logit <- empirical.logit(budworm$ndead, budworm$ntotal)
#' plot(log.dose, emp.logit, type='n', xlab='log-dose',ylab='emprirical logit')
#' title('budworm: emprirical logits of probability to die ')
#' male <- budworm$sex=='male'
#' female <- budworm$sex=='female'
#' lines(log.dose[male], emp.logit[male], type='b', lty=1, col=1)
#' lines(log.dose[female], emp.logit[female], type='b', lty=2, col=2)
#' legend(0.5, 2, legend=c('male', 'female'), lty=c(1,2), col=c(1,2))
#'
#' \dontrun{
#' * SAS example;
#' data budworm;
#' infile 'budworm.txt' firstobs=2;
#' input sex dose ndead ntotal;
#' run;
#' }
#'
#'
"budworm"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.