Description Usage Arguments Value Note Author(s) See Also Examples
View source: R/CalculatePAOrdered.R
Obtains a parallel analysis for ordered data.
1 2 | CalculatePAOrdered(dataMatrix, percentiles = 0.99, nReplicates = 200,
use = "complete.obs", algorithm = "polycor")
|
dataMatrix |
|
percentiles |
vector of percentiles to report. |
nReplicates |
number of simulations to produce for estimating the eigenvalues distribution under independence. |
use |
Missing value handling method: If |
algorithm |
string specifying the correlation estimation algorithm. Polychoric correlation estimation method: |
Returns a list
object with the following:
observed |
|
percentiles |
|
simulatedEigenValues |
|
This is an auxiliary function for the "PA"
function.
Carlos A. Arias carias@icfes.gov.co and Victor H. Cervantes vcervantes@icfes.gov.co
CalculatePABinary
, CalculatePAContinuous
, CalculatePAMixed
, PA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | # # NOT RUN
# # Run Parallel analysis for ordered polytomous data using the polycor package
# data(Science)
# Science[, ] <- lapply(Science, as.ordered)
# orderedPA <- PA(Science, percentiles = c(0.90, 0.99), nReplicates = 200,
# type = "ordered")
# print(orderedPA)
# # Run Parallel analysis for ordered polytomous data using
# # he polychoric C++ function
data(Science)
Science[, ] <- lapply(Science, as.ordered)
orderedPA <- PA(Science, percentiles = c(0.90, 0.99), nReplicates = 200,
type = "ordered", algorithm = "polychoric")
print(orderedPA)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.