IedgeCSstd.tri | R Documentation |
Returns I(
p1p2
is an edge
in the underlying or reflexivity graph of CS-PCDs )
for points p1
and p2
in the standard equilateral triangle.
More specifically, when the argument ugraph="underlying"
, it returns
the edge indicator for points p1
and p2
in the standard equilateral triangle,
for the CS-PCD underlying graph,
that is, returns 1 if p2
is
in N_{CS}(p1,t)
or p1
is in N_{CS}(p2,t)
,
returns 0 otherwise.
On the other hand,
when ugraph="reflexivity"
, it returns
the edge indicator for points p1
and p2
in the standard equilateral triangle,
for the CS-PCD reflexivity graph,
that is, returns 1 if p2
is
in N_{CS}(p1,t)
and p1
is in N_{CS}(p2,t)
,
returns 0 otherwise.
In both cases N_{CS}(x,t)
is the CS proximity region
for point x
with expansion parameter t > 0
.
CS proximity region is defined
with respect to the standard equilateral triangle
T_e=T(v=1,v=2,v=3)=T((0,0),(1,0),(1/2,\sqrt{3}/2))
and edge regions are based on the center M=(m_1,m_2)
in Cartesian coordinates or M=(\alpha,\beta,\gamma)
in barycentric coordinates in the interior of T_e
;
default is M=(1,1,1)
i.e., the center of mass of T_e
.
If p1
and p2
are distinct
and either of them are outside T_e
, it returns 0,
but if they are identical,
then it returns 1 regardless of their locations (i.e., it allows loops).
See also (\insertCiteceyhan:Phd-thesis,ceyhan:comp-geo-2010,ceyhan:stamet2016;textualpcds.ugraph).
IedgeCSstd.tri(
p1,
p2,
t,
M = c(1, 1, 1),
ugraph = c("underlying", "reflexivity")
)
p1 |
A 2D point whose CS proximity region is constructed. |
p2 |
A 2D point. The function determines
whether there is an edge from |
t |
A positive real number which serves as the expansion parameter in CS proximity region. |
M |
A 2D point in Cartesian coordinates
or a 3D point in barycentric coordinates
which serves as a center
in the interior of the standard equilateral triangle |
ugraph |
The type of the graph based on CS-PCDs,
|
Returns 1 if there is an edge between points p1
and p2
in the underlying or reflexivity graph of CS-PCDs
in the standard equilateral triangle, and 0 otherwise.
Elvan Ceyhan
IedgeCSbasic.tri
, IedgeCStri
,
and IarcCSstd.tri
#\donttest{
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
n<-3
set.seed(1)
Xp<-pcds::runif.std.tri(n)$gen.points
M<-as.numeric(pcds::runif.std.tri(1)$g)
IedgeCSstd.tri(Xp[1,],Xp[3,],t=1.5,M)
IedgeCSstd.tri(Xp[1,],Xp[3,],t=1.5,M,ugraph="reflexivity")
P1<-c(.4,.2)
P2<-c(.5,.26)
t<-2
IedgeCSstd.tri(P1,P2,t,M)
IedgeCSstd.tri(P1,P2,t,M,ugraph = "reflexivity")
#}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.