| inci.mat.undCSstd.tri | R Documentation | 
Returns the incidence matrix
for the underlying or reflexivity graphs of the CS-PCD
whose vertices are the given 2D numerical data set, Xp,
in the standard equilateral triangle
T_e=T(v=1,v=2,v=3)=T((0,0),(1,0),(1/2,\sqrt{3}/2)).
CS proximity region is constructed
with respect to the standard equilateral triangle T_e with
expansion parameter t > 0 and edge regions are based on
the center M=(m_1,m_2) in Cartesian coordinates
or M=(\alpha,\beta,\gamma) in barycentric coordinates
in the interior of T_e; default is M=(1,1,1),
i.e., the center of mass of T_e.
Loops are allowed,
so the diagonal entries are all equal to 1.
See also (\insertCiteceyhan:Phd-thesis,ceyhan:comp-geo-2010,ceyhan:stamet2016;textualpcds.ugraph).
inci.mat.undCSstd.tri(
  Xp,
  t,
  M = c(1, 1, 1),
  ugraph = c("underlying", "reflexivity")
)
| Xp | A set of 2D points which constitute the vertices of the underlying or reflexivity graphs of the CS-PCD. | 
| t | A positive real number which serves as the expansion parameter in CS proximity region. | 
| M | A 2D point in Cartesian coordinates
or a 3D point in barycentric coordinates
which serves as a center
in the interior of the standard equilateral triangle  | 
| ugraph | The type of the graph based on CS-PCDs,
 | 
Incidence matrix for the underlying or reflexivity graphs
of the CS-PCD with vertices
being 2D data set, Xp
in the standard equilateral triangle where CS proximity
regions are defined with M-edge regions.
Elvan Ceyhan
inci.mat.undCStri, inci.mat.undCS,
and inci.matCSstd.tri
#\donttest{
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
n<-10
set.seed(1)
Xp<-pcds::runif.std.tri(n)$gen.points
M<-as.numeric(pcds::runif.std.tri(1)$g)
inc.mat<-inci.mat.undCSstd.tri(Xp,t=1.5,M)
inc.mat
(sum(inc.mat)-n)/2
num.edgesCSstd.tri(Xp,t=1.5,M)$num.edges
pcds::dom.num.greedy(inc.mat)
pcds::Idom.num.up.bnd(inc.mat,2)
#}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.