| inci.mat.undPEstd.tri | R Documentation | 
Returns the incidence matrix
for the underlying or reflexivity graph of the PE-PCD
whose vertices are the given 2D numerical data set, Xp,
in the standard equilateral triangle
T_e=T(v=1,v=2,v=3)=T((0,0),(1,0),(1/2,\sqrt{3}/2)).
PE proximity region is constructed
with respect to the standard equilateral triangle T_e with
expansion parameter r \ge 1 and vertex regions are based on
the center M=(m_1,m_2) in Cartesian coordinates
or M=(\alpha,\beta,\gamma) in barycentric coordinates
in the interior of T_e; default is M=(1,1,1),
i.e., the center of mass of T_e.
Loops are allowed,
so the diagonal entries are all equal to 1.
See also (\insertCiteceyhan:Phd-thesis,ceyhan:comp-geo-2010,ceyhan:stamet2016;textualpcds.ugraph).
inci.mat.undPEstd.tri(
  Xp,
  r,
  M = c(1, 1, 1),
  ugraph = c("underlying", "reflexivity")
)
Xp | 
 A set of 2D points which constitute the vertices of the underlying or reflexivity graph of the PE-PCD.  | 
r | 
 A positive real number
which serves as the expansion parameter in PE proximity region;
must be   | 
M | 
 A 2D point in Cartesian coordinates
or a 3D point in barycentric coordinates
which serves as a center
in the interior of the standard equilateral triangle   | 
ugraph | 
 The type of the graph based on PE-PCDs,
  | 
Incidence matrix for the underlying or reflexivity graph
of the PE-PCD with vertices
being 2D data set, Xp
in the standard equilateral triangle where PE proximity
regions are defined with M-vertex regions.
Elvan Ceyhan
inci.mat.undPEtri, inci.mat.undPE,
and inci.matPEstd.tri
#\donttest{
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
n<-10
set.seed(1)
Xp<-pcds::runif.std.tri(n)$gen.points
M<-as.numeric(pcds::runif.std.tri(1)$g)
inc.mat<-inci.mat.undPEstd.tri(Xp,r=1.25,M)
inc.mat
(sum(inc.mat)-n)/2
num.edgesPEstd.tri(Xp,r=1.25,M)$num.edges
pcds::dom.num.greedy(inc.mat)
pcds::Idom.num.up.bnd(inc.mat,2)
#}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.