IarcCSt1.std.tri | R Documentation |
t=1
Returns I(
p2
is in N_{CS}(p1,t=1))
for points p1
and p2
, that is, returns 1 if p2
is in N_{CS}(p1,t=1)
,
returns 0 otherwise, where N_{CS}(x,t=1)
is the CS proximity region for point x
with expansion parameter t=1
.
CS proximity region is defined with respect to the standard equilateral triangle
T_e=T(A,B,C)=T((0,0),(1,0),(1/2,\sqrt{3}/2))
and edge regions are based on the center of mass CM=(1/2,\sqrt{3}/6)
.
If p1
and p2
are distinct and either are outside T_e
, it returns 0,
but if they are identical, then it returns 1 regardless of their locations (i.e., it allows loops).
IarcCSt1.std.tri(p1, p2)
p1 |
A 2D point whose CS proximity region is constructed. |
p2 |
A 2D point. The function determines whether |
I(
p2
is in N_{CS}(p1,t=1))
for p1
in T_e
that is, returns 1 if p2
is in N_{CS}(p1,t=1)
, returns 0 otherwise
Elvan Ceyhan
IarcCSstd.tri
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-3
set.seed(1)
Xp<-runif.std.tri(n)$gen.points
IarcCSt1.std.tri(Xp[1,],Xp[2,])
IarcCSt1.std.tri(c(.2,.5),Xp[2,])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.