| IarcPEstd.tetra | R Documentation |
Returns I(p2 is in N_{PE}(p1,r)) for points p1 and p2, that is, returns 1 if p2 is in N_{PE}(p1,r),
returns 0 otherwise, where N_{PE}(x,r) is the PE proximity region for point x with expansion parameter r \ge 1.
PE proximity region is defined with respect to the standard regular tetrahedron
T_h=T(v=1,v=2,v=3,v=4)=T((0,0,0),(1,0,0),(1/2,\sqrt{3}/2,0),(1/2,\sqrt{3}/6,\sqrt{6}/3)) and vertex regions
are based on the circumcenter (which is equivalent to the center of mass for standard regular tetrahedron)
of T_h. rv is the index of the vertex region p1 resides, with default=NULL.
If p1 and p2 are distinct and either of them are outside T_h, it returns 0,
but if they are identical, then it returns 1 regardless of their locations (i.e., it allows loops).
See also (\insertCiteceyhan:Phd-thesis,ceyhan:comp-geo-2010;textualpcds).
IarcPEstd.tetra(p1, p2, r, rv = NULL)
p1 |
A 3D point whose PE proximity region is constructed. |
p2 |
A 3D point. The function determines whether |
r |
A positive real number which serves as the expansion parameter in PE proximity region;
must be |
rv |
Index of the vertex region containing the point, either |
I(p2 is in N_{PE}(p1,r)) for points p1 and p2, that is, returns 1 if p2 is in N_{PE}(p1,r),
returns 0 otherwise
Elvan Ceyhan
IarcPEtetra, IarcPEtri and IarcPEint
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-3 #try also n<-20
Xp<-runif.std.tetra(n)$g
r<-1.5
IarcPEstd.tetra(Xp[1,],Xp[3,],r)
IarcPEstd.tetra(c(.4,.4,.4),c(.5,.5,.5),r)
#or try
RV<-rel.vert.tetraCC(Xp[1,],tetra)$rv
IarcPEstd.tetra(Xp[1,],Xp[3,],r,rv=RV)
P1<-c(.1,.1,.1)
P2<-c(.5,.5,.5)
IarcPEstd.tetra(P1,P2,r)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.