IarcPEstd.tri | R Documentation |
Returns I(
p2
is in N_{PE}(p1,r))
for points p1
and p2
in the standard equilateral triangle,
that is, returns 1 if p2
is in N_{PE}(p1,r)
,
and returns 0 otherwise,
where N_{PE}(x,r)
is the PE proximity region
for point x
with expansion parameter r \ge 1
.
PE proximity region is defined
with respect to the standard equilateral triangle
T_e=T(v=1,v=2,v=3)=T((0,0),(1,0),(1/2,\sqrt{3}/2))
and vertex regions are based on the center M=(m_1,m_2)
in Cartesian coordinates or M=(\alpha,\beta,\gamma)
in barycentric coordinates in the interior of T_e
;
default is M=(1,1,1)
, i.e., the center of mass of T_e
.
rv
is the index of the vertex region p1
resides,
with default=NULL
.
If p1
and p2
are distinct
and either of them are outside T_e
, it returns 0,
but if they are identical,
then it returns 1 regardless of their locations
(i.e., it allows loops).
See also (\insertCiteceyhan:Phd-thesis,ceyhan:comp-geo-2010,ceyhan:arc-density-CS;textualpcds).
IarcPEstd.tri(p1, p2, r, M = c(1, 1, 1), rv = NULL)
p1 |
A 2D point whose PE proximity region is constructed. |
p2 |
A 2D point. The function determines
whether |
r |
A positive real number
which serves as the expansion parameter in PE proximity region;
must be |
M |
A 2D point in Cartesian coordinates
or a 3D point in barycentric coordinates
which serves as a center
in the interior of the standard equilateral triangle |
rv |
The index of the vertex region in |
I(
p2
is in N_{PE}(p1,r))
for points p1
and p2
in the standard equilateral triangle,
that is, returns 1 if p2
is in N_{PE}(p1,r)
,
and returns 0 otherwise.
Elvan Ceyhan
IarcPEtri
, IarcPEbasic.tri
,
and IarcCSstd.tri
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
n<-3
set.seed(1)
Xp<-runif.std.tri(n)$gen.points
M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)
IarcPEstd.tri(Xp[1,],Xp[3,],r=1.5,M)
IarcPEstd.tri(Xp[1,],Xp[3,],r=2,M)
#or try
Rv<-rel.vert.std.triCM(Xp[1,])$rv
IarcPEstd.tri(Xp[1,],Xp[3,],r=2,rv=Rv)
P1<-c(.4,.2)
P2<-c(.5,.26)
r<-2
IarcPEstd.tri(P1,P2,r,M)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.