Idom.setPEstd.tri | R Documentation |
S
being a dominating set
or not for Proportional Edge Proximity Catch Digraphs (PE-PCDs) -
standard equilateral triangle caseReturns I(
S
a dominating set of PE-PCD
whose vertices are the data points Xp
)
for S
in the standard equilateral triangle,
that is,
returns 1 if S
is a dominating set of PE-PCD,
and returns 0 otherwise.
PE proximity region is constructed
with respect to the standard equilateral triangle
T_e=T(A,B,C)=T((0,0),(1,0),(1/2,\sqrt{3}/2))
with
expansion parameter r \ge 1
and vertex regions are based on the center M=(m_1,m_2)
in Cartesian coordinates or M=(\alpha,\beta,\gamma)
in barycentric coordinates in the interior of T_e
;
default is M=(1,1,1)
, i.e., the center of mass of T_e
(which is also equivalent to the circumcenter of T_e
).
Vertices of T_e
are also labeled as 1, 2, and 3,
respectively.
See also (\insertCiteceyhan:Phd-thesis,ceyhan:masa-2007,ceyhan:dom-num-NPE-Spat2011,ceyhan:mcap2012;textualpcds).
Idom.setPEstd.tri(S, Xp, r, M = c(1, 1, 1))
S |
A set of 2D points whose PE proximity regions are considered. |
Xp |
A set of 2D points which constitutes the vertices of the PE-PCD. |
r |
A positive real number
which serves as the expansion parameter in PE proximity region in the
standard equilateral triangle
|
M |
A 2D point in Cartesian coordinates
or a 3D point in barycentric coordinates
which serves as a center
in the interior of the standard equilateral triangle |
I(
S
a dominating set of PE-PCD)
for S
in the standard equilateral triangle,
that is, returns 1 if S
is a dominating set of PE-PCD,
and returns 0 otherwise,
where PE proximity region is constructed in the standard equilateral triangle T_e
.
Elvan Ceyhan
Idom.setPEtri
and Idom.setCSstd.tri
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.std.tri(n)$gen.points
M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)
r<-1.5
S<-rbind(Xp[1,],Xp[2,])
Idom.setPEstd.tri(S,Xp,r,M)
S<-rbind(Xp[1,],Xp[2,],Xp[3,],Xp[5,],c(.2,.5))
Idom.setPEstd.tri(S,Xp[3,],r,M)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.