| PEdom.num.tri | R Documentation | 
Returns the domination number of PE-PCD
whose vertices are the data points in Xp.
PE proximity region is defined
with respect to the triangle tri
with expansion parameter r \ge 1 and
vertex regions are constructed with center M=(m_1,m_2)
in Cartesian coordinates or M=(\alpha,\beta,\gamma)
in barycentric coordinates
in the interior of the triangle tri
or the circumcenter of tri.
See also (\insertCiteceyhan:Phd-thesis,ceyhan:masa-2007,ceyhan:dom-num-NPE-Spat2011,ceyhan:mcap2012;textualpcds).
PEdom.num.tri(Xp, tri, r, M = c(1, 1, 1))
| Xp | A set of 2D points which constitute the vertices of the digraph. | 
| tri | A  | 
| r | A positive real number
which serves as the expansion parameter in PE proximity region;
must be  | 
| M | A 2D point in Cartesian coordinates
or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle  | 
A list with two elements
| dom.num | Domination number of PE-PCD with vertex set =  | 
| mds | A minimum dominating set of PE-PCD with vertex set =  | 
| ind.mds | Indices of the minimum dominating set  | 
Elvan Ceyhan
PEdom.num.nondeg, PEdom.num,
and PEdom.num1D
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2)
Tr<-rbind(A,B,C)
n<-10  #try also n<-20
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g)  #try also M<-c(1,1,1)
r<-1.4
PEdom.num.tri(Xp,Tr,r,M)
IM<-inci.matPEtri(Xp,Tr,r,M)
dom.num.greedy #try also dom.num.exact(IM)
gr.gam<-dom.num.greedy(IM)
gr.gam
Xp[gr.gam$i,]
PEdom.num.tri(Xp,Tr,r,M=c(.4,.4))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.