PEdom.num.tri | R Documentation |
Returns the domination number of PE-PCD
whose vertices are the data points in Xp
.
PE proximity region is defined
with respect to the triangle tri
with expansion parameter r \ge 1
and
vertex regions are constructed with center M=(m_1,m_2)
in Cartesian coordinates or M=(\alpha,\beta,\gamma)
in barycentric coordinates
in the interior of the triangle tri
or the circumcenter of tri
.
See also (\insertCiteceyhan:Phd-thesis,ceyhan:masa-2007,ceyhan:dom-num-NPE-Spat2011,ceyhan:mcap2012;textualpcds).
PEdom.num.tri(Xp, tri, r, M = c(1, 1, 1))
Xp |
A set of 2D points which constitute the vertices of the digraph. |
tri |
A |
r |
A positive real number
which serves as the expansion parameter in PE proximity region;
must be |
M |
A 2D point in Cartesian coordinates
or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle |
A list
with two elements
dom.num |
Domination number of PE-PCD with vertex set = |
mds |
A minimum dominating set of PE-PCD with vertex set = |
ind.mds |
Indices of the minimum dominating set |
Elvan Ceyhan
PEdom.num.nondeg
, PEdom.num
,
and PEdom.num1D
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2)
Tr<-rbind(A,B,C)
n<-10 #try also n<-20
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1,1,1)
r<-1.4
PEdom.num.tri(Xp,Tr,r,M)
IM<-inci.matPEtri(Xp,Tr,r,M)
dom.num.greedy #try also dom.num.exact(IM)
gr.gam<-dom.num.greedy(IM)
gr.gam
Xp[gr.gam$i,]
PEdom.num.tri(Xp,Tr,r,M=c(.4,.4))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.