Pdom.num2PEtri | R Documentation |
Returns P(
domination number=2)
for PE-PCD for uniform data in a triangle,
when the sample size n
goes to
infinity (i.e., asymptotic probability of domination number = 2
).
PE proximity regions are constructed
with respect to the triangle
with the expansion parameter r \ge 1
and
M
-vertex regions where M
is the vertex
that renders the asymptotic distribution of the domination
number non-degenerate for the given value of r
in (1,1.5]
.
See also (\insertCiteceyhan:Phd-thesis,ceyhan:masa-2007,ceyhan:dom-num-NPE-Spat2011;textualpcds).
Pdom.num2PEtri(r)
r |
A positive real number
which serves as the expansion parameter in PE proximity region;
must be in |
P(
domination number=2)
for PE-PCD for uniform data on an triangle as the sample size n
goes to infinity
Elvan Ceyhan
Pdom.num2PE1D
Pdom.num2PEtri(r=1.5)
Pdom.num2PEtri(r=1.4999999999)
Pdom.num2PEtri(r=1.5) / Pdom.num2PEtri(r=1.4999999999)
rseq<-seq(1.01,1.49999999999,l=20) #try also l=100
lrseq<-length(rseq)
pg2<-vector()
for (i in 1:lrseq)
{
pg2<-c(pg2,Pdom.num2PEtri(rseq[i]))
}
plot(rseq, pg2,type="l",xlab="r",
ylab=expression(paste("P(", gamma, "=2)")),
lty=1,xlim=range(rseq)+c(0,.01),ylim=c(0,1))
points(rbind(c(1.50,Pdom.num2PEtri(1.50))),pch=".",cex=3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.