prj.cent2edges | R Documentation |
Returns the projections from a general center M=(m_1,m_2)
in Cartesian coordinates
or M=(\alpha,\beta,\gamma)
in
barycentric coordinates in the interior of a triangle to the edges
on the extension of the lines joining
M
to the vertices (see the examples for an illustration).
See also (\insertCiteceyhan:Phd-thesis,ceyhan:comp-geo-2010,ceyhan:mcap2012;textualpcds).
prj.cent2edges(tri, M)
tri |
A |
M |
A 2D point in Cartesian coordinates
or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle |
Three projection points (stacked row-wise)
from a general center M=(m_1,m_2)
in Cartesian coordinates
or M=(\alpha,\beta,\gamma)
in barycentric coordinates
in the interior of a triangle to the edges on
the extension of the lines joining M
to the vertices;
row i
is the projection point into edge i
, for i=1,2,3
.
Elvan Ceyhan
prj.cent2edges.basic.tri
and prj.nondegPEcent2edges
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)
Ds<-prj.cent2edges(Tr,M) #try also prj.cent2edges(Tr,M=c(1,1))
Ds
Xlim<-range(Tr[,1])
Ylim<-range(Tr[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
if (dimension(M)==3) {M<-bary2cart(M,Tr)}
#need to run this when M is given in barycentric coordinates
plot(Tr,pch=".",xlab="",ylab="",
main="Projection of Center M on the edges of a triangle",axes=TRUE,
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
xc<-Tr[,1]
yc<-Tr[,2]
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)
txt<-rbind(M,Ds)
xc<-txt[,1]+c(-.02,.04,-.04,-.02)
yc<-txt[,2]+c(-.02,.04,.04,-.06)
txt.str<-c("M","D1","D2","D3")
text(xc,yc,txt.str)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.