rel.vert.basic.triCM | R Documentation |
CM
-vertex region
in a standard basic triangle form that contains a pointReturns the index of the vertex
whose region contains point p
in
the standard basic triangle form T_b=T((0,0),(1,0),(c_1,c_2))
where c_1
is in [0,1/2]
, c_2>0
and (1-c_1)^2+c_2^2 \le 1
and vertex regions are
based on the center of mass CM=((1+c1)/3,c2/3) of T_b
.
(see the plots in the example for illustrations).
The vertices of the standard basic triangle form T_b
are labeled as
1=(0,0)
, 2=(1,0)
,and 3=(c_1,c_2)
also according to the row number the vertex is recorded in T_b
.
If the point, p
, is not inside T_b
,
then the function yields NA
as output.
The corresponding vertex region is the polygon with the vertex, CM
, and
midpoints of the edges adjacent to the vertex.
Any given triangle can be mapped to the standard basic triangle form by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence, standard basic triangle form is useful for simulation studies under the uniformity hypothesis.
See also (\insertCiteceyhan:Phd-thesis,ceyhan:comp-geo-2010,ceyhan:mcap2012,ceyhan:arc-density-PE;textualpcds)
rel.vert.basic.triCM(p, c1, c2)
p |
A 2D point for which |
c1 , c2 |
Positive real numbers
which constitute the upper vertex of the standard basic triangle form
(i.e., the vertex adjacent to the shorter edges of |
A list
with two elements
rv |
Index of the |
tri |
The vertices of the triangle,
where row number corresponds to the vertex index in |
#' @author Elvan Ceyhan
rel.vert.triCM
, rel.vert.tri
, rel.vert.triCC
,
rel.vert.basic.triCC
, rel.vert.basic.tri
, and rel.vert.std.triCM
c1<-.4; c2<-.6
P<-c(.4,.2)
rel.vert.basic.triCM(P,c1,c2)
A<-c(0,0);B<-c(1,0);C<-c(c1,c2);
Tb<-rbind(A,B,C)
CM<-(A+B+C)/3
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
n<-20 #try also n<-40
Xp<-runif.basic.tri(n,c1,c2)$g
Rv<-vector()
for (i in 1:n)
Rv<-c(Rv,rel.vert.basic.triCM(Xp[i,],c1,c2)$rv)
Rv
Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tb,xlab="",ylab="",axes="T",pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
points(Xp,pch=".")
polygon(Tb)
L<-Ds; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
text(Xp,labels=factor(Rv))
txt<-rbind(Tb,CM,Ds)
xc<-txt[,1]+c(-.03,.03,.02,-.01,.06,-.05,.0)
yc<-txt[,2]+c(.02,.02,.02,.04,.02,.02,-.03)
txt.str<-c("A","B","C","CM","D1","D2","D3")
text(xc,yc,txt.str)
plot(Tb,xlab="",ylab="",axes="T",pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
L<-Ds; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
RV1<-(A+D3+CM+D2)/4
RV2<-(B+D3+CM+D1)/4
RV3<-(C+D2+CM+D1)/4
txt<-rbind(RV1,RV2,RV3)
xc<-txt[,1]
yc<-txt[,2]
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)
txt<-rbind(Tb,CM,Ds)
xc<-txt[,1]+c(-.03,.03,.02,-.01,.04,-.03,.0)
yc<-txt[,2]+c(.02,.02,.02,.04,.02,.02,-.03)
txt.str<-c("A","B","C","CM","D1","D2","D3")
text(xc,yc,txt.str)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.