| rel.vert.mid.int | R Documentation |
Returns the index of the vertex
whose region contains point p in
the interval int=(a,b)=(vertex 1,vertex 2)
with (parameterized) center M_c associated with
the centrality parameter c \in (0,1);
vertices of interval are labeled as 1 and 2 according to their
order in the interval int.
If the point, p, is not inside int,
then the function yields NA as output.
The corresponding vertex region is the interval (a,b)
as (a,M_c) and (M_c,b)
where M_c=a+c(b-a).
See also (\insertCiteceyhan:metrika-2012,ceyhan:revstat-2016;textualpcds).
rel.vert.mid.int(p, int, c = 0.5)
p |
A 1D point. The vertex region |
int |
A |
c |
A positive real number in |
A list with two elements
rv |
Index of the vertex in the interval |
int |
The vertices of the interval as a |
Elvan Ceyhan
rel.vert.end.int
c<-.4
a<-0; b<-10; int = c(a,b)
Mc<-centerMc(int,c)
rel.vert.mid.int(6,int,c)
n<-20 #try also n<-40
xr<-range(a,b,Mc)
xf<-(int[2]-int[1])*.5
Xp<-runif(n,a,b)
Rv<-vector()
for (i in 1:n)
Rv<-c(Rv,rel.vert.mid.int(Xp[i],int,c)$rv)
Rv
jit<-.1
yjit<-runif(n,-jit,jit)
Xlim<-range(a,b,Xp)
xd<-Xlim[2]-Xlim[1]
plot(cbind(Mc,0),main="vertex region indices for the points", xlab=" ",
ylab=" ", xlim=Xlim+xd*c(-.05,.05),ylim=3*range(yjit),pch=".",cex=3)
abline(h=0)
points(Xp,yjit)
abline(v=c(a,b,Mc),lty = 2,col=c(1,1,2))
text(Xp,yjit,labels=factor(Rv))
text(cbind(c(a,b,Mc),.02),c("rv=1","rv=2","Mc"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.