Nothing
#' Procrustes cross-validation for PCA models
#'
#' @param X
#' matrix with predictors from the training set.
#' @param ncomp
#' number of components to use (more than the expected optimal number).
#' @param center
#' logical, to center or not the data sets
#' @param scale
#' logical, to scale or not the data sets
#' @param cv
#' which split method to use for cross-validation (see description for details).
#' @param cv.scope
#' scope for center/scale operations inside CV loop: 'global' — using globally computed mean and std
#' or 'local' — recompute new for each local calibration set.
#'
#' @details
#' The method computes Procrustes validation set (PV-set), matrix Xpv, based on PCA decomposition
#' of calibration set `X` and cross-validation. See description of the method in [1].
#'
#' Parameter `cv` defines how to split the rows of the training set. The split is similar
#' to cross-validation splits, as PCV is based on cross-validation. This parameter can have
#' the following values:
#'
#' 1. A number (e.g. `cv = 4`). In this case this number specifies number of segments for random
#' splits, except `cv = 1` which is a special case for leave-one-out (full cross-validation).
#'
#' 2. A list with 2 values: `list("name", nseg)`. In this case `"name"` defines the way to make
#' the split, you can select one of the following: `"loo"` for leave-one-out, `"rand"` for random
#' splits or `"ven"` for Venetian blinds (systematic) splits. The second parameter, `nseg`, is a
#' number of segments for splitting the rows into. For example, `cv = list("ven", 4)`, shown in
#' the code examples above, tells PCV to use Venetian blinds splits with 4 segments.
#'
#' 3. A vector with integer numbers, e.g. `cv = c(1, 2, 3, 1, 2, 3, 1, 2, 3)`. In this case number
#' of values in this vector must be the same as number of rows in the training set. The values
#' specify which segment a particular row will belong to. In case of the example shown here, it
#' is assumed that you have 9 rows in the calibration set, which will be split into 3 segments.
#' The first segment will consist of measurements from rows 1, 4 and 7.
#'
#' Parameter `cv.scope` influences how the Procrustean rule is met. In case of "global" scope,
#' the rule will be met strictly - distances for PV-set and the global model will be
#' identical to the distances from conventional cross-validation. In case of "local" scope, every
#' local model will have its own center and scaling factor and hence the rule will be almost
#' met (the distances will be close but not identical).
#'
#' @return
#' Matrix with PV-set (same size as X)
#'
#' @references
#' 1. S. Kucheryavskiy, O. Rodionova, A. Pomerantsev. Procrustes cross-validation of multivariate
#' regression models. Analytica Chimica Acta, 1255 (2022)
#' [https://doi.org/10.1016/j.aca.2023.341096]
#'
#' @examples
#'
#' # load NIR spectra of Corn samples
#' data(corn)
#' X <- corn$spectra
#'
#' # generate Xpv set based on PCA decomposition with A = 20 and venetian blinds split with 4 segments
#' Xpv <- pcvpca(X, ncomp = 20, center = TRUE, scale = FALSE, cv = list("ven", 4))
#'
#' # show the original spectra and the PV-set (as is and mean centered)
#' oldpar <- par(mfrow = c(2, 2))
#' matplot(t(X), type = "l", lty = 1, main = "Original data")
#' matplot(t(Xpv), type = "l", lty = 1, main = "PV-set")
#' matplot(t(scale(X, scale = FALSE)), type = "l", lty = 1, main = "Original data (mean centered)")
#' matplot(t(scale(Xpv, scale = FALSE)), type = "l", lty = 1, main = "PV-set (mean centered)")
#' par(oldpar)
#'
#' @importFrom stats sd
#'
#' @export
pcvpca <- function(X, ncomp = min(nrow(X) - 1, ncol(X), 30), cv = list("ven", 4),
center = TRUE, scale = FALSE, cv.scope = "global") {
# keep names if any
attrs <- attributes(X)
# compute global mean and standard deviation and autoscale the whole data
mX <- if (center) apply(X, 2, mean) else rep(0, ncol(X))
sX <- if (scale) apply(X, 2, sd) else rep(1, ncol(X))
X <- scale(X, center = mX, scale = sX)
# indices for cross-validation
ind <- pcvcrossval(cv, nrow(X), seq_len(nrow(X)))
# get number of segments
nseg <- max(ind)
# correct maximum number of components
max.ncomp <- min(nrow(X) - ceiling(nrow(X) / nseg) - 1 , ncol(X))
if (ncomp > max.ncomp) {
ncomp <- max.ncomp
}
# create a global model
m <- svd(X, nv = ncomp, nu = ncomp)
s <- m$d[seq_len(ncomp)]
P <- m$v
PPT <- tcrossprod(P)
Pi <- diag(1, nrow(P)) - PPT
# prepare empty matrix for pseudo-validation set
Xpv <- matrix(0, nrow(X), ncol(X))
# loop for computing the PV set
for (k in seq_len(nseg)) {
# split data to calibration and validation
ind.c <- ind != k
ind.k <- ind == k
X.c <- X[ind.c, , drop = FALSE]
X.k <- X[ind.k, , drop = FALSE]
# compute mean and standard deviation and autoscale in case of local scope
if (cv.scope == "local") {
mXl <- if (center) apply(X.c, 2, mean) else rep(0, ncol(X.c))
sXl <- if (scale) apply(X.c, 2, sd) else rep(1, ncol(X.c))
X.c <- scale(X.c, center = mXl, scale = sXl)
X.k <- scale(X.k, center = mXl, scale = sXl)
}
# get loadings for local model and rotation matrix between global and local models
m.k <- svd(X.c, nv = ncomp, nu = ncomp)
P.k <- m.k$v
# correct direction of loadings for local model
a <- acos(colSums(P * P.k)) < pi / 2
P.k <- P.k %*% diag(a * 2 - 1, ncol(P), ncol(P))
# get scores and residuals by projection local validation set to the local model
T.k <- X.k %*% P.k
E.k <- X.k - tcrossprod(T.k, P.k)
q.k <- rowSums(E.k^2)
# compute the parallel component of Xpv
Xpv.hat <- tcrossprod(T.k, P)
# compute the orthogonal component of Xpv
Xpv.orth <- getxpvorth(q.k, X.k, Pi)
# create and save the Xpv
Xpv[ind.k, ] <- Xpv.hat + Xpv.orth
}
# uscenter and unscale the data using global mean and std
Xpv <- sweep(Xpv, 2, sX, "*")
Xpv <- sweep(Xpv, 2, mX, "+")
attributes(Xpv) <- attrs
return(Xpv)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.