Description Usage Arguments Value Examples
View source: R/summary.penPHcure.R
Produces a summary of a fitted penalized PH cure model, after selection of the tuning parameters, based on AIC or BIC criteria.
1 2  | 
object | 
 an object of class   | 
crit.type | 
 a character string indicating the criterion used to select the tuning parameters, either   | 
... | 
 ellipsis to pass extra arguments.  | 
An object of class summary.penPHcure, a list including the following elements:
 | 
 the sample size (number of individuals).  | 
 | 
 the proportion of censored individuals.  | 
 | 
 the number of unique failure times.  | 
 | 
 logical value:   | 
 | 
 a character string indicating the type of penalty used, either   | 
 | 
 a character string indicating the criterion used to select tuning parameters, either   | 
 | 
 a list with elements named   | 
 | 
 value of the minimized AIC/BIC criterion.  | 
 | 
 a matrix where in the first column the estimated regression coefficients in the cure (incidence) component are provided. If the argument   | 
 | 
 a matrix where in the first column the estimated regression coefficients in the survival (latency) component are provided. If the argument   | 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102  | # Generate some data (for more details type ?penPHcure.simulate in your console)
set.seed(12) # For reproducibility
data <- penPHcure.simulate(N=250)
### Tune penalized cure model with SCAD penalties
# First define the grid of possible values for the tuning parameters.
pen.tuneGrid <- list(CURE = list(lambda = c(0.01,0.03,0.05,0.07,0.09),
                                 a = 3.7),
                     SURV = list(lambda = c(0.01,0.03,0.05,0.07,0.09),
                                 a = 3.7))
# Tune the penalty parameters.
tuneSCAD <- penPHcure(Surv(time = tstart,time2 = tstop,
                           event = status) ~ z.1 + z.2 + z.3 + z.4,
                      cureform = ~ x.1 + x.2 + x.3 + x.4,
                      data = data,pen.type = "SCAD",
                      pen.tuneGrid = pen.tuneGrid,
                      print.details = FALSE)
# Use the summary method to see the results
summary(tuneSCAD)
# 
# ------------------------------------------------------
# +++   PH cure model with time-varying covariates   +++
# +++             [ Variable selection ]             +++
# ------------------------------------------------------
# Sample size:  250
# Censoring proportion:  0.5
# Number of unique event times: 125
# Tied failure times:  FALSE
# Penalty type:  SCAD
# Selection criterion:  BIC
# 
# ------------------------------------------------------
# +++               Tuning parameters                +++
# ------------------------------------------------------
#  Cure (incidence) --- lambda:  0.07 
#                            a:  3.7 
# 
#  Survival (latency) - lambda:  0.07 
#                            a:  3.7 
# 
#  BIC =  -118.9359 
# 
# ------------------------------------------------------
# +++                Cure (incidence)                +++
# +++     [ Coefficients of selected covariates ]    +++
# ------------------------------------------------------
#              Estimate
# (Intercept)  0.872374
# x.1         -0.958260
# x.3          0.685916
# 
# ------------------------------------------------------
# +++              Survival (latency)                +++
# +++     [ Coefficients of selected covariates ]    +++
# ------------------------------------------------------
#      Estimate
# z.1  0.991754
# z.3 -1.008180
# By default, the summary method for the penPHcure.object returns the selected 
#  variables based on the BIC criterion. For AIC, the user can set the 
#  argument crit.type equal to "AIC". 
summary(tuneSCAD,crit.type = "AIC")
# 
# ------------------------------------------------------
# +++   PH cure model with time-varying covariates   +++
# +++             [ Variable selection ]             +++
# ------------------------------------------------------
# Sample size:  250
# Censoring proportion:  0.5
# Number of unique event times: 125
# Tied failure times:  FALSE
# Penalty type:  SCAD
# Selection criterion:  AIC
# 
# ------------------------------------------------------
# +++               Tuning parameters                +++
# ------------------------------------------------------
#  Cure (incidence) --- lambda:  0.07 
#                            a:  3.7 
# 
#  Survival (latency) - lambda:  0.07 
#                            a:  3.7 
# 
#  AIC =  -136.5432 
# 
# ------------------------------------------------------
# +++                Cure (incidence)                +++
# +++     [ Coefficients of selected covariates ]    +++
# ------------------------------------------------------
#              Estimate
# (Intercept)  0.872374
# x.1         -0.958260
# x.3          0.685916
# 
# ------------------------------------------------------
# +++              Survival (latency)                +++
# +++     [ Coefficients of selected covariates ]    +++
# ------------------------------------------------------
#      Estimate
# z.1  0.991754
# z.3 -1.008180
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.