Nothing
#' Extract model fits from step 1 of PRC-LMM
#'
#' Summary function to extract the estimated fixed effect parameters and
#' variances of the random effects from an object fitted using `fit_lmms`
#'
#' @param object the output of `fit_lmms`
#' @param yname a character giving the name of the longitudinal
#' variable for which you want to extract information
#' @param what one of the following: `'betas'` for the estimates
#' of the regression coefficients; `'tTable'` for the usual T table
#' produced by `nlme`; `'variances'` for the estimates of
#' the variances (and covariances) of the random effects and of the
#' variance of the error term
#' @param ... additional arguments
#'
#' @return A vector containing the estimated fixed-effect parameters if
#' `what = 'betas'`, the usual T table produced by `nlme` if `what = 'tTable'`,
#' or the estimated variance-covariance matrix of the random
#' effects and the estimated variance of the error if `what = 'variances'`
#'
#' @import nlme
#' @export
#'
#' @author Mirko Signorelli
#' @references
#' Signorelli, M. (2024). pencal: an R Package for the Dynamic
#' Prediction of Survival with Many Longitudinal Predictors.
#' To appear in: The R Journal. Preprint: arXiv:2309.15600
#'
#' Signorelli, M., Spitali, P., Al-Khalili Szigyarto, C,
#' The MARK-MD Consortium, Tsonaka, R. (2021).
#' Penalized regression calibration: a method for the prediction
#' of survival outcomes using complex longitudinal and
#' high-dimensional data. Statistics in Medicine, 40 (27), 6178-6196.
#' DOI: 10.1002/sim.9178
#'
#' @seealso \code{\link{fit_lmms}}
summary.lmmfit = function(object, yname, what = 'betas', ...) {
what = match.arg(what, choices = c('betas', 'tTable', 'variances'))
ynames = object$call.info$y.names
if (! yname %in% ynames) {
mess = paste(yname, 'is not one of the longitudinal variables in',
deparse(substitute(object)))
stop(mess)
}
else {
requireNamespace('nlme')
pos = which(object$call.info$y.names == yname)
lmm = object$lmm.fits.orig[[pos]]
if (what == 'betas') fixef(lmm)
else if (what == 'tTable') summary(lmm)$tTable
else if (what == 'variances') VarCorr(lmm)
else {
warning('what argument should be one of: betas, tTable, variances')
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.